Math 171A Homework Assignment #5

Due Date: February 23, 2018

1. (10 points) Consider the iLP:

Minimize \(3x_1 - x_2 + 2x_3 \)
subject to
\[
\begin{align*}
 -2x_1 + 4x_2 + 4x_3 & \geq 6 \\
 x_1 + 4x_2 + x_3 & \geq 5 \\
 -2x_1 + x_2 + 2x_3 & \geq 1 \\
 2x_1 - 2x_2 & \geq 0 \\
 -3x_2 + x_3 & \geq -2 \\
 x_1 & \geq 0 \\
 x_2 & \geq 0 \\
 x_3 & \geq 0
\end{align*}
\]

and the point \(\bar{x} = (1,1,1)^T \). Find the active set at \(\bar{x} \) and determine if the point \(\bar{x} \) is optimal. If \(\bar{x} \) is not optimal, find a direction \(p \) such that \(c^T p < 0 \) and \(A_a(\bar{x})p \geq 0 \).

2. (10 points) Consider the iLP: Minimize \(c^T x \) subject to \(Ax \geq b \), where

\[
A = \begin{bmatrix}
-1 & -3 & -1 \\
1 & 0 & -3 \\
0 & 1 & -2 \\
-2 & -3 & 1 \\
1 & 5 & 1
\end{bmatrix}, \quad b = \begin{bmatrix}
-3 \\
-2 \\
-4 \\
-2 \\
-6
\end{bmatrix}, \quad c = \begin{bmatrix}
-5 \\
-5 \\
3
\end{bmatrix}.
\]

(a) Verify that \(x^{(0)} = (1,1/3,1)^T \) is a vertex. What is the active set?

(b) Perform one iteration of the simplex method (Algorithm 4.2 in the textbook) to obtain the next iterate \(x^{(1)} \). Verify that \(x^{(1)} \) is feasible and that \(c^T x^{(1)} < c^T x^{(0)} \). What is the active set at \(x^{(1)} \)? Show your work.

(c) Repeat part (b) until a minimizer is found.
3. (10 points) Consider the following five constraints
\[x_1 + 2x_2 \leq 3, \quad x_1 - x_2 \geq 0, \quad 2x_1 + x_2 \leq 3, \quad x_1 + 5x_2 \leq 6, \quad x_1 - 2x_2 \geq -1. \]
(a) Find a degenerate vertex \(x^{(0)} \) (by sketching the feasible region).
How many possible working set matrices \(A_0 \) are there at \(x^{(0)} \)?
(b) Suppose that we wish to minimize \(x_1 + x_2 \) subject to these constraints, starting at \(x^{(0)} \) and using the simplex method. Find a working set matrix \(A_0 \) for which the Lagrange multiplier vector (the solution of \(A_0^T \lambda = c \)) contains at least one negative component \(\lambda_s \), but the simplex search direction satisfying \(A_0p = e_s \) is not a feasible descent direction (by inspecting the picture of the feasible region).
(c) Under the same conditions as in part (b), find a working set matrix \(A_0 \) for which the Lagrange multiplier vector contains at least one negative component, but the associated search direction \(p \) is a feasible descent direction (by inspecting the picture of the feasible region).

4. (10 points) Let \(A \in \mathbb{R}^{m \times n} \). Suppose \(x \geq 0 \) for all \(x \in \mathbb{R}^n \) satisfying \(Ax \geq 0 \). Show that there exists a matrix \(B \in \mathbb{R}^{m \times n} \) such that all entries of \(B \) are nonnegative and \(A^T B = I_n \).

5. (10 points) (i) Assume that \(p \in \text{Null}(A) \). If \(a \) is such that \(a^T p \neq 0 \), show that \(a \) must be linearly independent of the rows of \(A \). (ii) If \(a \) is linearly independent of the rows of \(A \) and \(p \in \text{Null}(A) \), is \(a^T p \neq 0 \)? Justify your answer.

6. (10 points) Consider the iLP : minimize \(c^T x \) subject to \(Ax \geq b \), where
\[
A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix} \in \mathbb{R}^{m \times n}, \quad b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}.
\]
Assume all vertices are nondegenerate, \(x_0 \) is a vertex whose working set is \(\mathcal{W}_0 \), \(A_0 \) denote the matrix whose rows are the rows of \(A \) specified by \(\mathcal{W}_0 \). \(\lambda \) and \(p \) are vectors satisfying \(A_0 \lambda = c \) and \(A_0p = e_s \), where \((\lambda)_s < 0 \). Let \(\mathcal{D} \) be the set of indices of decreasing constraints, \(r_j(x_0) = a_j^T x_0 - b_j \). For \(j \notin \mathcal{W}_0 \) define
\[
\sigma_j = \begin{cases} \frac{r_j(x_0)}{-a_j^T p} & \text{if } j \in \mathcal{D} \\ \infty & \text{otherwise} \end{cases}
\]
and $\alpha = \sigma_t = \min_{j \notin W_0} \sigma_j$. Show that if $\alpha < +\infty$, then $x_0 + \alpha p$ is a vertex whose working set is $W_0 - \{s\} + \{t\}$, and $c^T x_0 < c^T (x_0 + \alpha p)$.

7. (10 points) Let $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, $c \neq 0$. If $Ac < 0$, show that there is no $x \in \mathbb{R}^m$ such that $A^T x = c$ and $x \geq 0$.

8. (10 points) Let

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
1 & 0 & -2 \\
1 & 1 & -3 \\
0 & 1 & 1 \\
2 & 1 & 0
\end{bmatrix}, b = \begin{bmatrix}
2 \\
-1 \\
-1 \\
0 \\
1
\end{bmatrix}, c = \begin{bmatrix}
-1 \\
0 \\
-4
\end{bmatrix}
\]

Consider the iLP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \geq b
\end{align*}
\]

First check that $\bar{x} = (1, 1, 1)$ is a vertex of this optimization problem and write down the active set of \bar{x}. Use simplex method to solve this iLP.

9. (10 points) Consider the following iLP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \geq b
\end{align*}
\]

Show that if the iLP has a minimizer and the equation $Ax = b$ is compatible, then each \bar{x} satisfying $A\bar{x} = b$ is an optimizer.