Try: If \(f : S^2 \to \mathbb{R}_{\geq 0} \) is a frame function, then \(f \) is continuous.

If \(\psi : S^2 \to \mathbb{R} \) is a bounded function, then “define” \(\text{Var}_T(\psi) = \text{sup}(\psi|_T) - \text{inf}(\psi|_T) \)

Main concept is of \(\text{EW} \) great circle.

\(S = S^2 \subset \mathbb{R}^3 \), \(p \) is non-pole.

\[N = \{ x \mid x_{320} \} \]

\(\text{XEN-SP} \), \(\text{EW}(x) \) is the great circle joining \(x \) and \(x \times p \) \((e_E = \text{equator}) \)

Ex: Show this is the same as Gleason's \(\text{EW} \) great circle parametrically it is given by

\[t \mapsto \cos t x + \sin t \frac{x \times p}{\| x \times p \|} \]

pole of great circle \(\frac{x - (x \times p) x}{\| x - (x \times p) x \|} \)

\(\text{EW} \) through \(x \)

Lemma: If \(\text{ZEN-SP} \), then the set of all \(\text{XEN-SP} \)

s.t. there exists \(y \in \text{EW}(x) \cap \text{N-SP} \) s.t. \(z \in \text{EW}(y) \) has interior.

Hint: \(z \cdot (p - (y \times p) y) = 0 \)

and \(y \cdot (p - (x \times p) x) = 0 \) are the equations for the set of \((x,y)\)
\[f>0 \text{ frame function} \]
\[\text{Inf}(f) = u, \ u \ge 0 \]
may assume \(\text{Inf}(f) = 0 \) by subtracting \(u \).

Let \(\eta > 0 \) be given.
Let \(p \in S \) be such that \(f(p) < \eta \), make it the north pole.

\[\sigma = \begin{pmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} & 0 \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[x \in E, \quad \langle \sigma(x), x \rangle = 0 \quad (E \text{ the equator}) \]

\[\Rightarrow \quad p, x, \sigma(x) \text{ is a frame (orthonormal basis)} \]

\[f(x) + f(\sigma(x)) = w - f(p) \]

Define \(g(w) = f(w) + flow \), \(w \in S \)

\[g|_E = w - f(p) \]

\(g \) is a frame function and weight is \(2w \). constant on \(E \).

\[r \in N - \frac{3}{2}p \]

\[E \wedge (r) \cap E = F \text{ perpendicular to } r \]

\[\Rightarrow \quad g(r) + g(q) \le 2w, \quad \text{since } q \in E \quad g(q) = w - f(p) \]

\[\Rightarrow \quad g(r) + w - f(p) \le 2w \]

\[\Rightarrow \quad g(r) \le w + f(p) \le w + \eta. \quad \text{Since } r \text{ is arbitrary in } N - \frac{3}{2}p \]

\[\Rightarrow \quad \text{if } x \in N - \frac{3}{2}p, \text{ then } g(x) \le w + \eta \]
Note \(Ew(r) = SN \left(P \cap (r, r') \right) \)

\[r, q \in Ew(r) \quad g(r) + g(q) = 2w - g \left(\frac{g'}{\|g'\|} \right) \]

Let \(s \in Ew(r) \), \(t \perp s \), \(t \in Ew(r) \)

Take \(t \in N - \{ p \} \)

Then \(g(t) = g(s) + g(t) \leq g(s) + w + \eta \)

So \(g(r) + w - f(p) = g(s) + g(t) \leq g(s) + w + \eta \)

\[\Rightarrow g(r) \leq g(s) + 2\eta \quad \forall s \in Ew(r) \]

Take \(z \in N - \{ p \} \)

Let \(U \) be the open subset of \(N - \{ p \} \) from the lemma.

\[x \in U, \exists y \in Ew(x) \text{ s.t. } z \in Ew(y) \]

If \(s \in Ew(r) \), then \(g(r) \leq g(s) + 2\eta \)

Let \(z \in N - \{ p \} \) such that

\[g(z) < \inf_{z \in N - \{ p \}} g + \eta \]

\[\beta \leq g(x) = g(y) + 2\eta \leq g(z) + 4\eta \leq \beta + 5\eta \]

So \(\forall x, \forall z \leq g(z) \leq 5\eta \)

Lemma 4: Frame function.

Let \(p \in S \) be such that \(p \) has a nbd \(T \) so that

\[\forall x \in T, Var_x(U) = v \]

then if \(x \) is great circle with pole \(p \),

then \(\exists L \) nbd of \(x \) such that \(\forall x \in T \), \(Var_x(U) \leq 2v \)
\[
g(r) + g(r') = g(q_1) + g(q_1') \\
g(r) + g(r') = g(q_2) + g(q_2')
\]

\[
\Rightarrow g(q_1) - g(q_2) = g(r') - g(q_1') + g(q_2) - g(r') \\
\Rightarrow |g(q_1) - g(q_2)| \leq |g(r') - g(q_1')| + |g(q_2) - g(r')| \leq 2\eta \text{ since all the mined elements are above latitude } \theta.
\]

Thus there is a point \(q \) such that \(\text{Var}_L(g) \leq 2\eta \) is an open neighborhood.

Under some hypothesis, if \(r \in S \), then for some \(g \) such that \(\text{Var}_L(g) \leq 4\eta \):

\[
\text{Var}(g) \leq 4\eta \quad \text{if } r \in N \cap \{p\} \\
\text{otherwize } \quad r \text{ in } N \setminus \{p\}.
\]

\[
\exists R \text{ open with } p \in R \text{ with } \text{Var}_R(g) \leq 20\eta
\]

Know \(\text{Var}(p) = 2f(p) \)

\[
\therefore \text{Var}_R(p) \leq 22\eta
\]

If \(r \in S \), \(\exists \mod \text{ wrt } \theta \text{ such that } \text{Var}_{\theta}(f) \leq 88\eta \)
This implies the continuity so Gleason's theorem is (finally) proved.

There was one loose end. We asserted that if \(H^k \) is the space of spherical harmonics of degree \(k \) and if \(V \subset C(S^n) \) is a closed \(O(n+1) \)-invariant subspace then if \(\langle \psi | H^k \rangle \neq 0 \)
\(q^{-k} | V \rangle \). To see this we use the fact that if \(X_k(g) = tr(g | H^k) \) \(g \in O(n+1) \)
then \(dK = d\mu \circ H^k \). Then \(P_k : L^2(S^n) \to H^k | S^n \)
is given by \(P_k f(x) = dK \int X_k(g) f(g' x) dx \).

Let \(\overline{V} \) be the closure of \(V \) in \(L^2(S^n) \).

Then \(\langle \overline{V} | H^k | S^n \rangle \neq 0 \) so the Riesz representation theorem implies that \(\overline{V} \cap H^k | S^n \neq 0 \). Since \(O(n+1) \)
acts irreducibly \(H^k | S^n \subset \overline{V} \). Now we say that \(y, f \in H^k | S^n \) \(f, g \in V \) such that \(y \to f \) in \(L^2(S^n) \). From the formula for \(P_k \) above we see that \(P_k f \) is a
uniform limit of elements f in V for each j. Since $P_{k_1 f} \to f$ in $L^2(S^n)$ we see that $P_{k_1 f} \in V$ and $P_{k_1 f} \not\to f$ for j sufficiently large. Thus $V \cap H^{1/2}_{S^n} \neq \emptyset$. So reducibility implies $H^{1/2}_{S^n} \subset V$.