A Tale of Four Simple Groups over the Reals

Nolan Wallach

UCSD

September 2009
The quaternionic groups

Let $G_\mathbb{C}$ be a connected, simply connected simple Lie group over \mathbb{C} and let U be a maximal compact subgroup of $G_\mathbb{C}$. Let \mathfrak{g} denote the Lie algebra of $G_\mathbb{C}$. Fix a maximal torus, T, of U and let \mathfrak{h} denote its complexified Lie algebra. Let Φ be the root system of \mathfrak{g} with respect to \mathfrak{h} and let Φ^+ be a choice of positive roots. If $\alpha \in \Phi$ let $\check{\alpha}$ denote the corresponding coroot. Let τ denote the complex conjugation on $G_\mathbb{C}$ with respect to the real form U. We set $\sigma = \text{Ad}(\exp(\pi i \check{\alpha}_o))\tau$ where α_o is the highest root with respect to the choice of Φ^+. Then σ is a complex conjugation on $G_\mathbb{C}$. The fixed point set of σ is up to conjugacy the quaternionic real form of $G_\mathbb{C}$ which we will denote by $G_\mathbb{H}$.
The quaternionic groups

- Let $G_{\mathbb{C}}$ be a connected, simply connected simple Lie group over \mathbb{C} and let U be a maximal compact subgroup of $G_{\mathbb{C}}$. Let \mathfrak{g} denote the Lie algebra of $G_{\mathbb{C}}$.

- Fix a maximal torus, T, of U and let \mathfrak{h} denote its complexified Lie algebra. Let Φ be the root system of \mathfrak{g} with respect to \mathfrak{h} and let Φ^+ be a choice of positive roots. If $\alpha \in \Phi$ let $\check{\alpha} \in \mathfrak{h}$ denote the corresponding coroot. Let τ denote the complex conjugation on $G_{\mathbb{C}}$ with respect to the real form U. We set $\sigma = Ad(exp(\pi i \check{\alpha}_o))\tau$ where α_o is the highest root with respect to the choice of Φ^+.

N. Wallach (UCSD)
The quaternionic groups

- Let $G_\mathbb{C}$ be a connected, simply connected simple Lie group over \mathbb{C} and let U be a maximal compact subgroup of $G_\mathbb{C}$. Let \mathfrak{g} denote the Lie algebra of $G_\mathbb{C}$.

- Fix a maximal torus, T, of U and let \mathfrak{h} denote its complexified Lie algebra. Let Φ be the root system of \mathfrak{g} with respect to \mathfrak{h} and let Φ^+ be a choice of positive roots. If $\alpha \in \Phi$ let $\check{\alpha} \in \mathfrak{h}$ denote the corresponding coroot. Let τ denote the complex conjugation on $G_\mathbb{C}$ with respect to the real form U. We set $\sigma = \text{Ad}(\exp(\pi i \check{\alpha}_o)) \tau$ where α_o is the highest root with respect to the choice of Φ^+.

- Then σ is a complex conjugation on $G_\mathbb{C}$. The fixed point set of σ is up to conjugacy the quaternionic real form of $G_\mathbb{C}$ which we will denote by G. The Cartan involution that corresponds to the maximal compact subgroup $K = G \cap U$ is $\theta = \text{Ad}(\exp(\pi i \check{\alpha}_o))$.

The real form is called quaternionic since the subgroup of G corresponding to α_o is isomorphic to $SU(2)$ (the unit quaternions) and the action of this $SU(2)$ on the negative one eigenspace of θ in \mathfrak{g} is an even multiple of the two dimensional representation.
The real form is called quaternionic since the subgroup of G corresponding to α_o is isomorphic to $SU(2)$ (the unit quaternions) and the action of this $SU(2)$ on the negative one eigenspace of θ in \mathfrak{g} is an even multiple of the two dimensional representation.

This implies that K contains a normal subgroup, K_o, isomorphic with $SU(2)$ and another normal subgroup K_1 of codimension 3 such that $K = K_o \cdot K_1$. Let T_o be a maximal torus in K_o. We set $L = T_o K_1 = C_G(T_o)$.
The real form is called quaternionic since the subgroup of G corresponding to α_o is isomorphic to $SU(2)$ (the unit quaternions) and the action of this $SU(2)$ on the negative one eigenspace of θ in \mathfrak{g} is an even multiple of the two dimensional representation.

This implies that K contains a normal subgroup, K_o, isomorphic with $SU(2)$ and another normal subgroup K_1 of codimension 3 such that $K = K_o \cdot K_1$. Let T_o be a maximal torus in K_o. We set $L = T_o K_1 = C_G(T_o)$.

Then G/L has a homogeneous Kahler structure and we have a fibration

$$K/L = \mathbb{P}^1(\mathbb{C}) \rightarrow G/L \rightarrow G/K.$$
The real form is called quaternionic since the subgroup of \(G \) corresponding to \(\alpha_o \) is isomorphic to \(SU(2) \) (the unit quaternions) and the action of this \(SU(2) \) on the negative one eigenspace of \(\theta \) in \(\mathfrak{g} \) is an even multiple of the two dimensional representation.

This implies that \(K \) contains a normal subgroup, \(K_o \), isomorphic with \(SU(2) \) and another normal subgroup \(K_1 \) of codimension 3 such that \(K = K_o \cdot K_1 \). Let \(T_o \) be a maximal torus in \(K_o \). We set \(L = T_o K_1 = C_G(T_o) \).

Then \(G/L \) has a homogenous Kahler structure and we have a fibration

\[K/L = \mathbb{P}^1(\mathbb{C}) \rightarrow G/L \rightarrow G/K. \]

If \(q \) is the parabolic subalgebra of \(\mathfrak{g} \) that is given by the sum of the non-negative eigenspaces of \(ad(\tilde{\alpha}_o) \) and if \(Q \) is the normalizer of \(q \) in \(G_{\mathbb{C}} \) then the complex structure comes from \(G/L = G_{\mathbb{C}}/Q \).
In our 1996 paper Dick Gross and I consider the holomorphic line bundles, \mathcal{L}_λ, over G/L corresponding to unitary characters, λ, of L trivial on K_1. These characters have differential $k \frac{\alpha_o}{2}$. Using methods of Schmid's thesis we show that if $k \geq 2$ then the only non-zero sheaf cohomology is in degree 1.
In our 1996 paper Dick Gross and I consider the holomorphic line bundles, \(L_\lambda \), over \(G/L \) corresponding to unitary characters, \(\lambda \), of \(L \) trivial on \(K_1 \). These characters have differential \(k \frac{\alpha_o}{2} \). Using methods of Schmid’s thesis we show that if \(k \geq 2 \) then the only non-zero sheaf cohomology is in degree 1.

Under this condition we show that the \((g, K)\) module of \(K\)-finite cohomology \(H^1(G/L, L_\lambda)_K \) has a unique irreducible submodule. For each of the exceptional groups of real rank 4 this yields 3 cases where the subrepresentation is proper (for \(D_4 \) we will give two).
In our 1996 paper Dick Gross and I consider the holomorphic line bundles, L_λ, over G/L corresponding to unitary characters, λ, of L trivial on K_1. These characters have differential $k\frac{\alpha_o}{2}$. Using methods of Schmid’s thesis we show that if $k \geq 2$ then the only non-zero sheaf cohomology is in degree 1.

Under this condition we show that the (g,K) module of K-finite cohomology $H^1(G/L, L_\lambda)_K$ has a unique irreducible submodule. For each of the exceptional groups of real rank 4 this yields 3 cases where the subrepresentation is proper (for D_4 we will give two).

We will, at first, restrict our attention to the exceptional quaternionic real forms and $S_3 \ltimes SO(4,4)_o$.
In our 1996 paper Dick Gross and I consider the holomorphic line bundles, L_λ, over G/L corresponding to unitary characters, λ, of L trivial on K_1. These characters have differential $k\frac{\alpha_0}{2}$. Using methods of Schmid’s thesis we show that if $k \geq 2$ then the only non-zero sheaf cohomology is in degree 1.

Under this condition we show that the (\mathfrak{g}, K) module of K-finite cohomology $H^1(G/L, L_\lambda)_K$ has a unique irreducible submodule. For each of the exceptional groups of real rank 4 this yields 3 cases where the subrepresentation is proper (for D_4 we will give two).

We will, at first, restrict our attention to the exceptional quaternionic real forms and $S_3 \rtimes SO(4,4)_o$.

$Q = L_\mathbb{C} U$ with U the unipotent radical of Q. We set $V = \text{Lie}(U)/[\text{Lie}(U), \text{Lie}(U)]$. V is a symplectic vector space since U is a Heisenberg group. The three representations above follow the orbit structure of the action of $L_\mathbb{C}$ on $\mathbb{P}(V)$.

In each of these cases there are 4 orbits.
In each of these cases there are 4 orbits.

1. An open orbit \mathcal{O}_1 with complement the hypersurface, X_1, defined by the degree 4 generator of the semiinvariants of the action of L_C on V.

2. In X_1 there is one open orbit, \mathcal{O}_2, whose complement we denote X_2.

3. In X_2 there is one open orbit, \mathcal{O}_3. In the case of D_4 this orbit has three components permuted by the S_3.

4. The complement of \mathcal{O}_3 in X_2 is the closed orbit $\mathcal{O}_4 = X_3$.

N. Wallach (UCSD)
In each of these cases there are 4 orbits.

1. An open orbit O_1 with complement the hypersurface, X_1, defined by the degree 4 generator of the semiinvariants of the action of L_C on V.

2. In X_1 there is one open orbit, O_2, whose complement we denote X_2.

3. In X_2 there is one open orbit, O_3. In the case of D_4 this orbit has three components permuted by the S_3.

4. The complement of O_3 in X_2 is the closed orbit $O_4 = X_3$.

N. Wallach (UCSD)
In each of these cases there are 4 orbits.

1. An open orbit \mathcal{O}_1 with complement the hypersurface, X_1, defined by the degree 4 generator of the semiinvariants of the action of L_C on V.
2. In X_1 there is one open orbit, \mathcal{O}_2, whose complement we denote X_2.
3. In X_2 there is one open orbit, \mathcal{O}_3. In the case of D_4 this orbit has three components permuted by the S_3.
In each of these cases there are 4 orbits.

1. An open orbit O_1 with complement the hypersurface, X_1, defined by the degree 4 generator of the semiinvariants of the action of L_C on V.
2. In X_1 there is one open orbit, O_2, whose complement we denote X_2.
3. In X_2 there is one open orbit, O_3. In the case of D_4 this orbit has three components permuted by the S_3.
4. The complement of O_3 in X_2 is the closed orbit $O_4 = X_3$.
The point here is that the K-spectrum of each of these representations is of the form

$$\bigoplus_{n \geq 0} S^{k-2+n}(\mathbb{C}^2) \otimes A^n(Y).$$

Here Y is an L_C invariant closed subvariety of $\mathbb{P}(V)$, $A^n(Y)$ is the space of degree n elements of the homogeneous coordinate ring. Here is the table of values of k and Y.

<table>
<thead>
<tr>
<th>k</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Y_2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Y_3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

We will now look at the next level but only for the exceptional groups the meaning of the numbers f will be more apparent.
The point here is that the K-spectrum of each of these representations is of the form

$$\bigoplus_{n \geq 0} S^{k-2+n}(\mathbb{C}^2) \otimes A^n(Y).$$

Here Y is an $L_{\mathbb{C}}$ invariant closed subvariety of $\mathbb{P}(V)$, $A^n(Y)$ is the space of degree n elements of the homogeneous coordinate ring. Here is the table of values of k and Y.

<table>
<thead>
<tr>
<th></th>
<th>D_4</th>
<th>F_4</th>
<th>E_6</th>
<th>E_7</th>
<th>E_8</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td>10</td>
<td>16</td>
<td>28</td>
<td>X_1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>10</td>
<td>18</td>
<td>X_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>X_3</td>
<td></td>
</tr>
</tbody>
</table>
The point here is that the K-spectrum of each of these representations is of the form

$$\bigoplus_{n \geq 0} S^{k-2+n}(\mathbb{C}^2) \otimes A^n(Y).$$

Here Y is an $L_{\mathbb{C}}$ invariant closed subvariety of $\mathbb{P}(V)$, $A^n(Y)$ is the space of degree n elements of the homogeneous coordinate ring. Here is the table of values of k and Y.

<table>
<thead>
<tr>
<th></th>
<th>D_4</th>
<th>F_4</th>
<th>E_6</th>
<th>E_7</th>
<th>E_8</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>16</td>
<td>28</td>
<td>X_1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>18</td>
<td></td>
<td>X_2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>X_3</td>
</tr>
</tbody>
</table>

The point here is that if $f = 0, 1, 2, 4, 8$ for D_4, F_4, E_6, E_7 and E_8 respectively then the numbers appearing are $3f + 4, 2f + 2, f + 2$. We will now look at the next level but only for the exceptional groups the meaning of the numbers f will be more apparent.
However before we do this a word should be said about these unitary representations.
However before we do this a word should be said about these unitary representations.

The representation corresponding to $k = 2$ the case of D_4 is due to Kostant it yields the minimal representation of $SO(4, 4)_o$. Note that the formula for the K spectrum above shows that this is the unique case where the representation is spherical.
However before we do this a word should be said about these unitary representations.

The representation corresponding to $k = 2$ the case of D_4 is due to Kostant it yields the minimal representation of $SO(4, 4)_o$. Note that the formula for the K spectrum above shows that this is the unique case where the representation is spherical.

For all of the other groups the last row yields their minimal representation. The results in all cases are analogous to my results for holomorphic representations.
The next level of groups

Let $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H}. If X is an $n \times n$ matrix over F then X^* will denote the conjugate (relative to F) transpose.
The next level of groups

- Let $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H}. If X is an $n \times n$ matrix over F then X^* will denote the conjugate (relative to F) transpose.

- Let g_F be the real vector space consisting of the $2n \times 2n$ matrices of the block form

$$
\begin{bmatrix}
 A & X \\
 Y & -A^*
\end{bmatrix}
$$

with $A, X, Y \in M_n(F)$ and $X^* = X, Y^* = Y$. An easy check shows that g_F is a Lie subalgebra of $M_{2n}(F)$.

N. Wallach (UCSD)
The next level of groups

- Let $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H}. If X is an $n \times n$ matrix over F then X^* will denote the conjugate (relative to F) transpose.

- Let g_F be the real vector space consisting of the $2n \times 2n$ matrices of with block form

$$
\begin{bmatrix}
A & X \\
Y & -A^*
\end{bmatrix}
$$

with $A, X, Y \in M_n(F)$ and $X^* = X, Y^* = Y$. An easy check shows that g_F is a Lie subalgebra of $M_{2n}(F)$.

- We take for G the corresponding subgroup of $GL(2n, F)$ or a finite covering group. (If one wants a simple Lie group one needs to take the commutator subgroup if $F = \mathbb{C}$.)
The next level of groups

- Let $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H}. If X is an $n \times n$ matrix over F then X^* will denote the conjugate (relative to F) transpose.
- Let g_F be the real vector space consisting of the $2n \times 2n$ matrices of with block form
 \[
 \begin{bmatrix}
 A & X \\
 Y & -A^*
 \end{bmatrix}
 \]
 with $A, X, Y \in M_n(F)$ and $X^* = X$, $Y^* = Y$. An easy check shows that g_F is a Lie subalgebra of $M_{2n}(F)$.
- We take for G the corresponding subgroup of $GL(2n, F)$ or a finite covering group. (If one wants a simple Lie group one needs to take the commutator subgroup if $F = \mathbb{C}$.)
- The groups given in this way are locally $Sp(n, \mathbb{R})$ for $F = \mathbb{R}$, $U(n, n)$ for $F = \mathbb{C}$ and $SO^*(4n)$ for $F = \mathbb{H}$.
The next level of groups

- Let $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H}. If X is an $n \times n$ matrix over F then X^* will denote the conjugate (relative to F) transpose.

- Let g_F be the real vector space consisting of the $2n \times 2n$ matrices of with block form

$$
\begin{bmatrix}
A & X \\
Y & -A^*
\end{bmatrix}
$$

with $A, X, Y \in M_n(F)$ and $X^* = X, Y^* = Y$. An easy check shows that g_F is a Lie subalgebra of $M_{2n}(F)$.

- We take for G the corresponding subgroup of $GL(2n, F)$ or a finite covering group. (If one wants a simple Lie group one needs to take the commutator subgroup if $F = \mathbb{C}$.)

- The groups given in this way are locally $Sp(n, \mathbb{R})$ for $F = \mathbb{R}$, $U(n, n)$ for $F = \mathbb{C}$ and $SO^*(4n)$ for $F = \mathbb{H}$.

- The group K is respectively locally $U(n), U(n) \times U(n)$ and $U(2n)$.
There is one more example of a “field” over \(\mathbb{R} \) the Octonians, \(\mathbb{O} \).
There is one more example of a “field” over \mathbb{R} the Octonians, \mathbb{O}.

Here we attempt to make the $2n \times 2n$ matrices over \mathbb{O} in the above block form. This fails to produce a Lie algebra.
There is one more example of a “field” over \(\mathbb{R} \) the Octonians, \(\mathfrak{O} \).

Here we attempt to make the \(2n \times 2n \) matrices over \(\mathfrak{O} \) in the above block form. This fails to produce a Lie algebra.

A reinterpretation of the block form above sets up the new example. First we note that we can look upon \(\mathcal{A}_F = \{ X \in M_n(F) | X^* = X \} \) as a Jordan algebra under \(X \circ Y = \frac{1}{2}(XY + YX) \). The automorphism groups of these Jordan algebras are \(O(n), U(n) \) and \(Sp(n) \) under the obvious action. The upshot is that we can look upon the Cartan decomposition of \(M_n(F) \) as giving a direct sum decomposition \(\text{Der}(\mathcal{A}_F) \oplus \{ L_X | X \in \mathcal{A}_F \} \). \(L_X Y = X \circ Y \). The total Lie algebra is \(\mathcal{A}_F^* \oplus (\text{Der}(\mathcal{A}_F) \oplus \{ L_X | X \in \mathcal{A}_F \}) \oplus \mathcal{A}_F \).
There is one more example of a “field” over \(\mathbb{R} \) the Octonians, \(\mathcal{O} \).

Here we attempt to make the \(2n \times 2n \) matrices over \(\mathcal{O} \) in the above block form. This fails to produce a Lie algebra.

A reinterpretation of the block form above sets up the new example. First we note that we can look upon \(\mathcal{A}_F = \{ X \in M_n(F) | X^* = X \} \) as a Jordan algebra under \(X \circ Y = \frac{1}{2} (XY + YX) \). The automorphism groups of these Jordan algebras are \(O(n) \), \(U(n) \) and \(Sp(n) \) under the obvious action. The upshot is that we can look upon the Cartan decomposition of \(M_n(F) \) as giving a direct sum decomposition

\[
\text{Der}(\mathcal{A}_F) \oplus \{ L_X | X \in \mathcal{A}_F \},
\]

\(L_X Y = X \circ Y \). The total Lie algebra is

\[
\mathcal{A}_F^* \oplus (\text{Der}(\mathcal{A}_F) \oplus \{ L_X | X \in \mathcal{A}_F \}) \oplus \mathcal{A}_F.
\]

\(\mathcal{A}_O = \{ X \in M_3(\mathcal{O}) | X^* = X \} \) under \(X \circ Y = \frac{1}{2} (XY + YX) \) forms a Jordan algebra. \(\text{Der}(\mathcal{A}_O) \) is isomorphic with the compact real form of \(F_4 \). The Lie algebra \(\text{Der}(\mathcal{A}_O) \oplus \{ L_X | X \in \mathcal{A}_O \} \) is isomorphic to the direct sum of a one dimensional center and a rank 2 real form of \(E_6 \). The total Lie algebra (putting together all the parts) is the rank 3 real form of \(E_7 \).
We now consider a Heisenberg parabolic subgroup of \(G \) for our 4 quaternionic examples (it is unique up to conjugacy in \(G \)). This is a real parabolic subgroup whose complexification is conjugate to \(Q \). We will denote it by \(P \).
We now consider a Heisenberg parabolic subgroup of G for our 4 quaternionic examples (it is unique up to conjugacy in G). This is a real parabolic subgroup whose complexification is conjugate to Q. We will denote it by P.

Let $P = MAN$ be a Langlands decomposition of P. Then in each of the four cases $\text{Lie}(M)$ is the indicated Lie algebra. In each case the group is a real form of $L_{\mathbb{C}}$.

$V_{\mathbb{R}} = \text{Lie}(N/\left[N, N \right])$. Then the generic unitary characters of N (identified with $V_{\mathbb{R}}$) for which the quaternionic discrete series has a generalized Whittaker model form one open orbit under MA. We note that there are 4 open orbits.
We now consider a Heisenberg parabolic subgroup of G for our 4 quaternionic examples (it is unique up to conjugacy in G). This is a real parabolic subgroup whose complexification is conjugate to Q. We will denote it by P.

Let $P = MAN$ be a Langlands decomposition of P. Then in each of the four cases $\text{Lie}(M)$ is the indicated Lie algebra. In each case the group is a real form of L_C.

We set $V_R = \text{Lie}(N/\mathbb{N}, N)$. Then the generic unitary characters of \mathbb{N} (identified with V_R) for which the quaternionic discrete series has a generalized Whittaker model form one open orbit under MA. We note that there are 4 open orbits.
We now consider a Heisenberg parabolic subgroup of G for our 4 quaternionic examples (it is unique up to conjugacy in G). This is a real parabolic subgroup whose complexification is conjugate to Q. We will denote it by P.

Let $P = MAN$ be a Langlands decomposition of P. Then in each of the four cases $\text{Lie}(M)$ is the indicated Lie algebra. In each case the group is a real form of $L_\mathbb{C}$.

We set $V_\mathbb{R} = \text{Lie}(N/[N,N])$. Then the generic unitary characters of \overline{N} (identified with $V_\mathbb{R}$) for which the quaternionic discrete series has a generalized Whittaker model form one open orbit under MA. We note that there are 4 open orbits.

We now move to the groups M.

For F_4, E_6, E_7, E_8, respectively, we assign the field of dimension 1, 2, 4 or 8, F. Then for the first 3, MA is the subgroup of $GL(6, F)$ corresponding to the Lie algebra constructed above for $n = 3$. For the octonions the group is the real form of E_7 constructed above. In other words these are groups of automorphisms of the Hermitian symmetric tube domains of rank 3.
For F_4, E_6, E_7, E_8, respectively, we assign the field of dimension 1, 2, 4 or 8, F. Then for the first 3, $\mathcal{M}A$ is the subgroup of $GL(6, F)$ corresponding to the Lie algebra constructed above for $n = 3$. For the octonions the group is the real form of E_7 constructed above. In other words these are groups of automorphisms of the Hermitian symmetric tube domains of rank 3.

Associated to M is a conjugacy class of real parabolic subgroups with abelian nilradical. Their Lie algebras can be described, in the notation above, as $(\text{Der}(A_F) \oplus \{L_a | a \in A_F\}) \oplus A_F$.

For F_4, E_6, E_7, E_8, respectively, we assign the field of dimension 1, 2, 4 or 8, F. Then for the first 3, MA is the subgroup of $GL(6, F)$ corresponding to the Lie algebra constructed above for $n = 3$. For the octonions the group is the real form of E_7 constructed above. In other words these are groups of automorphisms of the Hermitian symmetric tube domains of rank 3.

Associated to M is a conjugacy class of real parabolic subgroups with abelian nilradical. Their Lie algebras can be described, in the notation above, as $(\text{Der}(A_F) \oplus \{L_a|a \in A_F\}) \oplus A_F$.

This is the Shilov boundary parabolic for each of these tube domains. The full Lie algebra is

$$A^*_F \oplus (\text{Der}(A_F) \oplus \{L_a|a \in A_F\}) \oplus A_F.$$
We note that if \overline{N} is the unipotent radical of the corresponding opposite parabolic subgroup of M then the unitary characters of \overline{N} are given by elements of A_F. The element 1 has as stabilizer in M the compact symmetric subgroup corresponding to $\text{Der}(A_F)$. This condition allows one to characterize all Bessel models for admissible representations of these groups. This problem was solved this year.
We note that if \overline{N} is the unipotent radical of the corresponding opposite parabolic subgroup of M then the unitary characters of \overline{N} are given by elements of A_F. The element 1 has as stabilizer in M the compact symmetric subgroup corresponding to $Der(A_F)$.

This condition allows one to characterize all Bessel models for admissible representations of these groups. This problem was solved this year.
We note that if \mathcal{N} is the unipotent radical of the corresponding opposite parabolic subgroup of M then the unitary characters of \mathcal{N} are given by elements of \mathcal{A}_F. The element 1 has as stabilizer in M the compact symmetric subgroup corresponding to $\text{Der}(\mathcal{A}_F)$.

This condition allows one to characterize all Bessel models for admissible representations of these groups. This problem was solved this year.

Set H equal to the normalizer in G of $\text{Der}(\mathcal{A}_F) \oplus \{L_a \mid a \in \mathcal{A}_F\}$. This is the next to the last level of groups we will study.
These groups are $GL(3, F)$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O}.
These groups are $GL(3, F)$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O}.

Let B be a minimal parabolic subgroup of H. Then H/B is, respectively, the manifold of flags in $\mathbb{P}^2(F)$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O}.
These groups are $GL(3, F)$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathfrak{O}.

Let B be a minimal parabolic subgroup of H. Then H/B is, respectively, the manifold of flags in $\mathbb{P}^2(F)$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathfrak{O}.

A maximal compact subgroup of H, K_H, is respectively $O(3), U(3), Sp(3)$ and F_4.
These groups are $GL(3, F)$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O}.

Let B be a minimal parabolic subgroup of H. Then H/B is, respectively, the manifold of flags in $\mathbb{P}^2(F)$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O}.

A maximal compact subgroup of H, K_H, is respectively $O(3), U(3), Sp(3)$ and F_4.

The flag varieties are thus given by $K_H/B \cap K_H$.
The groups $K_H \cap B$ are $U(1, F)^3$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and $Spin(8)$ for \mathbb{O}.

Notice that each of these groups has triality (an S_3) of outer automorphisms. Using this triality, in my 1972, Annals paper I showed that each of these flag varieties admitted a, homogeneous, positively pinched, Riemannian structure.

The only known examples of simply connected, compact, manifolds admitting a positively pinched Riemannian structure of dimension greater than 24 are the spheres and projective spaces over $F = \mathbb{C}, \mathbb{H}$.

N. Wallach (UCSD)
The groups $K_H \cap B$ are $U(1, F)^3$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and $Spin(8)$ for \mathbb{O}.

Notice that each of these groups has triality (an S_3) of outer automorphisms.
The groups $K_H \cap B$ are $U(1, F)^3$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and $Spin(8)$ for \mathbb{O}.

Notice that each of these groups has triality (an S_3) of outer automorphisms.

Using this triality, in my 1972, Annals paper I showed that each of these flag varieties admitted a homogeneous, positively pinched, Riemannian structure.
The groups $K_H \cap B$ are $U(1, F)^3$ for $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and $Spin(8)$ for \mathbb{O}.

Notice that each of these groups has triality (an S_3) of outer automorphisms.

Using this triality, in my 1972, Annals paper I showed that each of these flag varieties admitted a, homogeneous, positively pinched, Riemannian structure.

The only known examples of simply connected, compact, manifolds admitting a positively pinched Riemannian structure of dimension greater than 24 are the spheres and projective spaces over $F = \mathbb{C}, \mathbb{H}$.