Ex 14.7

Q14

Find the critical points of \(f(x, y) = e^{x^2 - y^2 + y} \) and determine its behavior by second derivatives test.

Proof:

1. \(\frac{\partial f}{\partial x} = 2x e^{x^2 - y^2 + y} \quad \text{--- (i)} \)

2. \(\frac{\partial^2 f}{\partial y^2} = (-2y + 4) e^{x^2 - y^2 + y} \quad \text{--- (ii)} \)

(i) \(= 0 \Rightarrow x = 0 \)

If \(x = 0 \) and sub it to (ii):

\(\Rightarrow -2y + 4 = 0 \Rightarrow y = 2 \).

\((x, y) = (0, 2) \) is a critical point.

Since \(\frac{\partial^2 f}{\partial x^2} = 2 e^{x^2 - y^2 + y} (1 + 2x^2) \)

\(\frac{\partial^2 f}{\partial x \partial y} = 4x (2-y) e^{x^2 - y^2 + y} \)
\[
\frac{\partial^2 f}{\partial y^2} = 2e^{x^2-y^2+4y}(2y^2+8y+7)
\]

\[D(0,2) = f_{xx}f_{yy} - f_{xy}^2 |_{(x,y)=(0,2)} = -4e^8 < 0\]

By the second derivative test, it is a saddle point.

Q24
Show that \(f(x,y) = x^2 \) has infinitely many critical points, and that the second derivative test fails for all of them. What is the minimum value of \(f \)? Does \(f(x,y) \) have any local maxima?

\[\begin{align*}
f &= 0 = \frac{\partial f}{\partial x} = 2x \\
0 &= \frac{\partial f}{\partial y} = 0
\end{align*}\]

\[\therefore (0, y) \text{ are critical points for any } y.\]
\[
\frac{\partial^2 f}{\partial x^2} = 2, \quad \frac{\partial f}{\partial y} = 0, \quad \frac{\partial^2 f}{\partial y^2} = 0
\]

i. \(D(0, y) = f_{xx} - f_{xy} \bigg|_{(x,y)=(0,y)} = 0 \)

ii. The Second Derivative Test fails.

However, we know \(f(x, y) = x^2 \) is always non-negative and reach 0 at \((0, y)\).

iii. The minimum value of \(f \) is 0.

And there are no local maxima since for any \((x, y)\) in the coordinate plane.

- if \(x > 0 \), then \(f(x+\Delta x, y) = (x+\Delta x)^2 \geq x^2 \)
 \(\Delta x > 0 \)

- if \(x < 0 \), then \(f(x-\Delta x, y) = (x-\Delta x)^2 \geq x^2 \)
 \(\Delta x > 0 \)

iv. There are no local maxima.
Q38.
Determine the global extreme values of the function
\[f(x, y) = 5x - 3y, \quad y \geq x - 2, \quad y \geq -x - 2, \quad y \leq 3. \]

If:

\[D = \{ (x, y) \mid y \geq x - 2, \quad y \geq -x - 2, \quad y \leq 3 \} \]

\[\frac{\partial f}{\partial x} = 5 \]
\[\frac{\partial f}{\partial y} = -3 \]

There are no critical point in \(D \).

We study \(f(x, y) \) along boundary of \(D \).

(i) \(f \) along \(y = 3 \) and \(-5 \leq x \leq 5\)
\[f(x, 3) = 5x - 9 \]

It is clear that
\[f(-5, 3) = -34 \quad \text{is a local min} \]
\[f(5, 3) = 16 \quad \text{is a local max} \]
(ii) For any \(y = x - 2 \), \(0 \leq x \leq 5 \)

\[
f(x, x-2) = 5x - 3(x-2) = 2x + 2
\]

It is clear that
\(f(0, -2) = 6 \) is a local min
\(f(5, 3) = 16 \) is a local max

(iii) For any \(y = -x - 2 \), \(-5 \leq x \leq 0 \)

\[
f(x, -x-2) = 5x - 3(-x-2) = 8x + 2
\]

It is clear that
\(f(0, -2) = 6 \) is a local max
\(f(-5, 3) = -34 \) is a local min

By comparing all local max & min,
we have
\(f(-5, 3) = -34 \) is a global min on \(D \)
\(f(5, 3) = 16 \) is a global max on \(D \).
Q40. Determine the global extreme values of the function.

\[f(x, y) = x^2 + x^2 y + 2y^2, \quad x, y \geq 0, \quad x+y \leq 1. \]

\[D = \{(x, y) \mid x \geq 0, \quad y \geq 0, \quad x+y \leq 1\} \]

\[\begin{align*}
\frac{\partial f}{\partial x} &= 3x^2 + 2xy & \text{(i)} \\
\frac{\partial f}{\partial y} &= x^2 + 4y & \text{(ii)} \\
\text{from (ii),} & \quad y = \frac{x^2}{4} \\
\text{Sub } y = \frac{x^2}{4} \quad \text{to (i),} & \quad 3x^2 + 2x\left(\frac{x^2}{4}\right) = 0 \\
& \quad x^2 \left(3 + \frac{x}{2}\right) = 0 \\
& \quad x = 0 \quad \text{or} \quad x = -6.
\end{align*} \]
\[\frac{1}{3} \text{ if } x=0, \quad y=0 \]
\[\frac{1}{3} \text{ if } x=-6, \quad y=9. \]

However, \((0,0)\) and \((-6,9)\) are not in the interior of \(D\).

There are no critical points in \(D\). Then, we study its boundary behavior.

(i) Along \(x=0\) \(0 \leq y \leq 1\)
\[f(0, y) = 2y^2. \]

It is clear that
\[f(0,0) = 0 \text{ is a local min} \]
\[f(0,1) = 2 \text{ is a local max} \]

(ii) Along \(y=0\) \(0 \leq x \leq 1\)
\[f(x,0) = x^3 \]

It is clear that
\[f(0,0) = 0 \text{ is a local min} \]
\[f(1,0) = 1 \text{ is a local max} \]

\[\text{P.T.} \]
(iii) Along $x+y=1$, $0 \leq x \leq 1$

$$f(x, -x) = x^3 + x^2(-x) + 2(-x)^2$$
$$= x^3 + x^2 - x^3 + 2 - 4x + 2x^2$$
$$= 3x^2 - 4x + 2$$

Let $g(x) = f(x, 1-x) = 3x^2 - 4x + 2$

$$0 = g'(x) = 6x - 4$$

$$x = \frac{2}{3}$$ is a critical point

$$g\left(\frac{2}{3}\right) = f\left(\frac{2}{3}, \frac{1}{3}\right) = 3\left(\frac{2}{3}\right)^2 - 4\left(\frac{2}{3}\right) + 2 = \frac{2}{3}$$

$$f(0, 1) = 2$$

$$f(1, 0) = 1$$

$$f(0, 1) = 2$$ is a local max.

$$f\left(\frac{2}{3}, \frac{1}{3}\right) = \frac{2}{3}$$ is a local min.

By comparing all local min & max, we have

$$f(0, 1) = 2$$ is a global max in D

$$f(0, 0) = 0$$ is a global min in D
Ex 14.8

Q15

Find the point \((a, b)\) on the graph of \(y = e^x\) where the value \(ab\) is as small as possible.

Proof: Let \(f(x, y) = xy\) be the function you want to minimize.

Let \(g(x, y) = y - e^x\) be the constraint.

\[
\nabla f = \lambda \nabla g
\]

\[
y = -xe^x \quad \text{(i)}
\]

\[
x = \lambda \quad \text{(ii)}
\]

\[
0 = y - e^x \quad \text{(iii)}
\]

from (ii) \(x = \lambda\)

from (iii) \(y = e^x\)

plug \(x = \lambda\) & \(y = e^x\) to (i)

\[
e^x + xe^x = 0
\]

\[
\Rightarrow e^x(1 + x) = 0
\]

\[
\Rightarrow x = -1
\]

\[
\therefore y = e^{-1}
\]

\[
\therefore (-1, e^{-1}) \text{ is a critical point.}
\]
and as $x \to \infty$, $y = e^x \to \infty$.

$\therefore xy \to \infty$

as $x \to -\infty$, $y = e^x \to 0$

and by L'Hopital's rule,

we have $xe^x \to 0$ as $x \to 0$

\begin{equation}
\text{maximum is subject to } y = e^x \text{ has min value } -e^{-1} \text{ at } (-1, e^{-1}) .
\end{equation}

Q24.

Show that the maximum value of $f(x,y) = x^2y^3$ on the unit circle is $\frac{6}{25} \sqrt{5}$.

\textbf{Pf: } Let $g(x,y) = x^2 + y^2 - 1$ be a constraint.

\begin{align*}
\nabla f &= \lambda \nabla g \\
2xy^3 &= 2\lambda x \\
3x^2y^2 &= 2\lambda y \\
x^2 + y^2 &= 1
\end{align*}
From (i)
\[2xy^3 - 2\lambda x = 0 \]
\[x(y^3 - \lambda) = 0 \]
\[\Rightarrow x = 0 \quad \text{or} \quad y^3 = \lambda. \]

Case 1. \(x = 0 \)
Sub \(x = 0 \) to (iii)
\[\Rightarrow y = 1 \quad \text{or} \quad -1 \]
and sub \(y = \pm 1 \) \(\text{and} \) \(x = 0 \) to (ii)
\[\Rightarrow \lambda = 0 \]
i.e. \((0, 1)\) and \((0, -1)\) are critical points.

Case 2. \(\lambda = y^3 \)
Sub \(\lambda = y^3 \) to (ii)
\[\Rightarrow 3xy^2 = 2y^3 \cdot y \]
\[y^2(3x - 2y^2) = 0 \]
\[\Rightarrow y = 0 \quad \text{or} \quad x = \sqrt[3]{\frac{2}{3}}y \quad \text{or} \quad x = -\sqrt[3]{\frac{2}{3}}y \]
case 2.1 \[y = 0 \]

Sub \(y = 0 \) to (iii)

\[\Rightarrow x = \pm 1 \]

\[\therefore (1, 0) \text{ and } (-1, 0) \text{ are critical points} \]

case 2.2 \[x = \sqrt{\frac{2}{3}} y \]

Sub \(x = \sqrt{\frac{2}{3}} y \) to (iii)

\[\therefore \begin{cases} \frac{2}{3} y^2 + y^2 = 1 \\ \frac{5}{3} y^2 = 1 \end{cases} \]

\[\Rightarrow \begin{cases} y = \sqrt{\frac{3}{5}} \text{ or } -\sqrt{\frac{3}{5}} \end{cases} \]

\[\therefore \left(\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}} \right) \text{ and } \left(-\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}} \right) \text{ are critical points} \]
case 2.3 \(x = -\sqrt{\frac{2}{3}} y \).

Substitute \(x = -\sqrt{\frac{2}{3}} y \) to (ciii):

\[
\therefore \quad \frac{2}{3} y^2 + y^2 = 1
\]

\[
\Rightarrow \begin{cases}
 y = \sqrt{\frac{3}{5}} \\
 y = -\sqrt{\frac{3}{5}}
\end{cases}
\]

\[
\Rightarrow (-\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}}) \quad \text{and} \quad (\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}})
\]

are critical points.

By comparing the values at all critical points:

\((1, 0), \ (0, 1), \ (0, -1), \ (-1, 0), \ (0, 1), \ (-\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}}), \ (\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}}), \ (\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}}), \ (-\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}})\)

\(f(\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}}) \) and \(f(-\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}}) \) both gives

\[
\frac{6}{25} \sqrt{\frac{3}{5}}
\]

which is the max. value. \(\star \)