Randomized Algorithms and Motif Finding
Outline

1. Randomized QuickSort
2. Randomized Algorithms
3. Greedy Profile Motif Search
4. Gibbs Sampler
5. Random Projections
Section 1: Randomized QuickSort
Randomized Algorithms

- **Randomized Algorithm**: Makes random rather than deterministic decisions.

- The main advantage is that no input can reliably produce worst-case results because the algorithm runs differently each time.

- These algorithms are commonly used in situations where no exact and fast algorithm is known.
Introduction to QuickSort

- **QuickSort** is a simple and efficient approach to sorting.
 1. Select an element m from unsorted array c and divide the array into two subarrays:
 - $c_{\text{small}} =$ elements smaller than m
 - $c_{\text{large}} =$ elements larger than m
 2. Recursively sort the subarrays and combine them together in sorted array c_{sorted}
QuickSort: Example

- Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

- **Step 1:** Choose the first element as \(m \)
QuickSort: Example

- Given an array: \(c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\} \)

- Step 2: Split the array into \(c_{\text{small}} \) and \(c_{\text{large}} \) based on \(m \).

\[
c_{\text{small}} = \{\} \quad \quad \quad \quad \quad \quad \quad \quad c_{\text{large}} = \{\}
\]

\[
c = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}
\]
QuickSort: Example

• Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

• **Step 2:** Split the array into \(c_{\text{small}} \) and \(c_{\text{large}} \) based on \(m \).

\[
\begin{align*}
 c_{\text{small}} & = \{ 3 \} \\
 c_{\text{large}} & = \{ \} \\
 c & = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}
\end{align*}
\]
QuickSort: Example

• Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

• **Step 2:** Split the array into \(c_{\text{small}} \) and \(c_{\text{large}} \) based on \(m \).

\[
\begin{align*}
 c_{\text{small}} &= \{ 3, 2 \} \\
 c_{\text{large}} &= \{ \} \\
 c &= \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}
\end{align*}
\]
QuickSort: Example

- Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

- **Step 2:** Split the array into \(c_{\text{small}} \) and \(c_{\text{large}} \) based on \(m \).

\[
\begin{align*}
 c_{\text{small}} &= \{ 3, 2 \} \\
 c_{\text{large}} &= \{ 8 \}
\end{align*}
\]

\[
c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}
\]
QuickSort: Example

• Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

• **Step 2:** Split the array into \(c_{\text{small}} \) and \(c_{\text{large}} \) based on \(m \).

\[
c_{\text{small}} = \{ 3, 2, 4 \} \quad \text{and} \quad c_{\text{large}} = \{ 8 \}
\]

\[
c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}
\]
QuickSort: Example

• Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

• Step 2: Split the array into \(c_{\text{small}} \) and \(c_{\text{large}} \) based on \(m \).

\[
\begin{align*}
c_{\text{small}} &= \{ 3, 2, 4, 5 \} \\
c_{\text{large}} &= \{ 8 \}
\end{align*}
\]

\[
c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}
\]
QuickSort: Example

• Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

• **Step 2:** Split the array into \(c_{\text{small}} \) and \(c_{\text{large}} \) based on \(m \).

\[
c_{\text{small}} = \{ 3, 2, 4, 5, 1 \} \quad c_{\text{large}} = \{ 8 \}
\]

\[
c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}
\]
QuickSort: Example

• Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

• **Step 2:** Split the array into \(c_{\text{small}} \) and \(c_{\text{large}} \) based on \(m \).

\[
c_{\text{small}} = \{ 3, 2, 4, 5, 1 \} \quad \quad c_{\text{large}} = \{ 8, 7 \}
\]

\[
c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}
\]
QuickSort: Example

• Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

• **Step 2:** Split the array into \(c_{\text{small}} \) and \(c_{\text{large}} \) based on \(m \).

\[
c_{\text{small}} = \{ 3, 2, 4, 5, 1, 0 \} \quad c_{\text{large}} = \{ 8, 7 \}
\]

\[
c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}
\]
QuickSort: Example

- Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

- **Step 2:** Split the array into \(c_{\text{small}} \) and \(c_{\text{large}} \) based on \(m \).

\[
\begin{align*}
 c_{\text{small}} &= \{ 3, 2, 4, 5, 1, 0 \} \\
 c_{\text{large}} &= \{ 8, 7, 9 \}
\end{align*}
\]

\[
c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \}
\]
QuickSort: Example

- Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

- **Step 3:** Recursively do the same thing to \(c_{\text{small}} \) and \(c_{\text{large}} \) until each subarray has only one element or is empty.

\[
\begin{align*}
 c_{\text{small}} &= \{ 3, 2, 4, 5, 1, 0 \} & c_{\text{large}} &= \{ 8, 7, 9 \} \\
 m &= 3 & m &= 8 \\
 \{ 2, 1, 0 \} & \quad \{ 4, 5 \} & \{ 7 \} & \quad \{ 9 \} \\
 m &= 2 & & m &= 4 \\
 \{ 1, 0 \} & \quad \{ \text{empty} \} & \{ \text{empty} \} & \quad \{ 5 \} \\
 m &= 1 & & & & & & & & \end{align*}
\]
QuickSort: Example

- Given an array: \(c = \{ 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 \} \)

- **Step 4:** Combine the two arrays with \(m \) working back out of the recursion as we build together the sorted array.

\[
\begin{align*}
\{ 0 \} & \quad 1 \quad \{ \text{empty} \} \\
\{ 0, 1 \} & \quad 2 \quad \{ \text{empty} \} \\
\{ 0, 1, 2 \} & \quad 3 \\
\{ 4, 5 \} & \\
\{ 7 \} & \quad 8 \\
\{ 9 \} & \\
\end{align*}
\]

\[c_{\text{small}} = \{ 0, 1, 2, 3, 4, 5 \} \]

\[c_{\text{large}} = \{ 7, 8, 9 \} \]
QuickSort: Example

- Finally, we can assemble \(c_{\text{small}} \) and \(c_{\text{large}} \) with our original choice of \(m \), creating the sorted array \(c_{\text{sorted}} \).

\[
\begin{align*}
 c_{\text{small}} &= \{0, 1, 2, 3, 4, 5\} & m &= 6 & c_{\text{large}} &= \{7, 8, 9\} \\
 c_{\text{sorted}} &= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
\end{align*}
\]
The QuickSort Algorithm

1. \textbf{QuickSort}(c)
2. if \(c\) consists of a single element
3. \hspace{1em} return \(c\)
4. \hspace{1em} \(m \leftarrow c_1\)
5. Determine the set of elements \(c_{\text{small}}\) smaller than \(m\)
6. Determine the set of elements \(c_{\text{large}}\) larger than \(m\)
7. \textbf{QuickSort}(\(c_{\text{small}}\))
8. \textbf{QuickSort}(\(c_{\text{large}}\))
9. Combine \(c_{\text{small}}, m,\) and \(c_{\text{large}}\) into a single array, \(c_{\text{sorted}}\)
10. return \(c_{\text{sorted}}\)
QuickSort Analysis: Optimistic Outlook

• Runtime is based on our selection of m:
 • A good selection will split c evenly so that $|c_{small}| = |c_{large}|$.
 • For a sequence of good selections, the recurrence relation is:
 \[T(n) = 2T\left(\frac{n}{2}\right) + \text{constant} \cdot n \]

 The time it takes to sort two smaller arrays of size $n/2$
 Time it takes to split the array into 2 parts

• In this case, the solution of the recurrence gives a runtime of $O(n \log n)$.
QuickSort Analysis: Pessimistic Outlook

• However, a poor selection of m will split c unevenly and in the worst case, all elements will be greater or less than m so that one subarray is full and the other is empty.

• For a sequence of poor selection, the recurrence relation is:

$$T(n) = T(n-1) + \text{constant} \cdot n$$

The time it takes to sort one array containing $n-1$ elements

Time it takes to split the array into 2 parts where const is a positive constant

• In this case, the solution of the recurrence gives runtime $O(n^2)$.
QuickSort Analysis

• QuickSort seems like an inefficient MergeSort.

• To improve QuickSort, we need to choose m to be a good “splitter.”

• It can be proven that to achieve $O(n \log n)$ running time, we don’t need a perfect split, just a reasonably good one. In fact, if both subarrays are at least of size $n/4$, then the running time will be $O(n \log n)$.

• This implies that half of the choices of m make good splitters.
Section 2: Randomized Algorithms
A Randomized Approach to QuickSort

- To improve QuickSort, *randomly* select m.

- Since half of the elements will be good splitters, if we choose m at random we will have a 50% chance that m will be a good choice.

- This approach will make sure that no matter what input is received, the expected running time is small.
The RandomizedQuickSort Algorithm

1. RandomizedQuickSort(c)
2. if c consists of a single element
 3. return c
4. Choose element m uniformly at random from c
5. Determine the set of elements c_{small} smaller than m
6. Determine the set of elements c_{large} larger than m
7. RandomizedQuickSort(c_{small})
8. RandomizedQuickSort(c_{large})
9. Combine c_{small}, m, and c_{large} into a single array, c_{sorted}
10. return c_{sorted}

Lines in red indicate the differences between QuickSort and RandomizedQuickSort
RandomizedQuickSort Analysis

- Worst case runtime: $O(m^2)$

- **Expected Runtime**: $O(m \log m)$.

- Expected runtime is a good measure of the performance of randomized algorithms; it is often more informative than worst case runtimes.

- RandomizedQuickSort will always return the correct answer, which offers us a way to classify Randomized Algorithms.
Two Types of Randomized Algorithms

1. **Las Vegas Algorithm**: Always produces the correct solution (i.e., RandomizedQuickSort)

2. **Monte Carlo Algorithm**: Does not always return the correct solution.

- Good Las Vegas Algorithms are always preferred, but they are often hard to come by.
Section 3:
Greedy Profile Motif Search
A New Motif Finding Approach

• **Motif Finding Problem:** Given a list of t sequences each of length n, find the “best” pattern of length l that appears in each of the t sequences.

• **Previously:** We solved the Motif Finding Problem using an Exhaustive Search or a Greedy technique.

• **Now:** *Randomly* select possible locations and find a way to greedily change those locations until we have converged to the hidden motif.
Profiles Revisited

• Let \(s=(s_1,\ldots,s_t) \) be the set of starting positions for \(l \)-mers in our \(t \) sequences.

• The substrings corresponding to these starting positions will form:
 • \(t \times l \) alignment matrix
 • \(4 \times l \) profile matrix \(P \).

• We make a special note that the profile matrix will be defined in terms of the frequency of letters, and not as the count of letters.
Scoring Strings with a Profile

• Pr(a | P) is defined as the probability that an l-mer a was created by the profile P.

• If a is very similar to the consensus string of P then Pr(a | P) will be high.

• If a is very different, then Pr(a | P) will be low.

• Formula for Pr(a | P):

\[
\Pr(a \mid P) = \prod_{i=1}^{n} P_{a_i, i}
\]
Scoring Strings with a Profile

- Given a profile: $P = \begin{pmatrix}
A & 1/2 & 7/8 & 3/8 & 0 & 1/8 & 0 \\
C & 1/8 & 0 & 1/2 & 5/8 & 3/8 & 0 \\
T & 1/8 & 1/8 & 0 & 0 & 1/4 & 7/8 \\
G & 1/4 & 0 & 1/8 & 3/8 & 1/4 & 1/8
\end{pmatrix}$

- The probability of the consensus string:
 - $\text{Pr}(\text{AAACCT} \mid P) = ???$
Scoring Strings with a Profile

Given a profile: \(P = \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/2</td>
<td>7/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>0</td>
<td>1/2</td>
<td>5/8</td>
</tr>
<tr>
<td>T</td>
<td>1/8</td>
<td>1/8</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>G</td>
<td>1/4</td>
<td>0</td>
<td>1/8</td>
<td>1/4</td>
</tr>
</tbody>
</table>

The probability of the consensus string:

\[
\Pr(\text{AAACCT} \mid P) = \left(\frac{1}{2}\right) \times \frac{7}{8} \times \frac{3}{8} \times \frac{5}{8} \times \frac{3}{8} \times \frac{7}{8} = 0.033646
\]
Scoring Strings with a Profile

- Given a profile: $P = \begin{array}{cccccc}
A & 1/2 & 7/8 & 3/8 & 0 & 1/8 & 0 \\
C & 1/8 & 0 & 1/2 & 5/8 & 3/8 & 0 \\
T & 1/8 & 1/8 & 0 & 0 & 1/4 & 7/8 \\
G & 1/4 & 0 & 1/8 & 3/8 & 1/4 & 1/8 \\
\end{array}$

- The probability of the consensus string:
 - $Pr(\text{AAACCT} \mid P) = \frac{1}{2} \times \frac{7}{8} \times \frac{3}{8} \times \frac{5}{8} \times \frac{3}{8} \times \frac{7}{8} = 0.033646$

- The probability of a different string:
 - $Pr(\text{ATACAG} \mid P) = \frac{1}{2} \times \frac{1}{8} \times \frac{3}{8} \times \frac{5}{8} \times \frac{1}{8} \times \frac{1}{8} = 0.001602$
P-Most Probable l-mer

- Define the P-most probable l-mer from a sequence as the l-mer contained in that sequence which has the highest probability of being generated by the profile P.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>7/8</td>
<td>3/8</td>
<td>0</td>
<td>1/8</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>0</td>
<td>1/2</td>
<td>5/8</td>
<td>3/8</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>1/8</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td>1/4</td>
<td>7/8</td>
</tr>
<tr>
<td>G</td>
<td>1/4</td>
<td>0</td>
<td>1/8</td>
<td>3/8</td>
<td>1/4</td>
<td>1/8</td>
</tr>
</tbody>
</table>

- **Example:** Given a sequence = CTATAAACCTTACATC, find the P-most probable l-mer.
P-Most Probable l-mer

- Find $\text{Pr}(a \mid P)$ of every possible 6-mer:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/2</td>
<td>7/8</td>
<td>3/8</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>0</td>
<td>1/2</td>
<td>5/8</td>
</tr>
<tr>
<td>T</td>
<td>1/8</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1/4</td>
<td>0</td>
<td>1/8</td>
<td>3/8</td>
</tr>
</tbody>
</table>

- First Try: **C T A T A A A C C T A C A T C**
- Second Try: **C T A T A A A A C C T T A C A T C**
- Third Try: **C T A T A A A C C T T A C A T C**

- Continue this process to evaluate every 6-mer.
P-Most Probable l-mer

- Compute $\Pr(a \mid P)$ for every possible 6-mer:

<table>
<thead>
<tr>
<th>String, Highlighted in Red</th>
<th>Calculations</th>
<th>$\text{prob}(a \mid P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTATAAACCTTTACAT</td>
<td>1/8 x 1/8 x 3/8 x 0 x 1/8 x 0</td>
<td>0</td>
</tr>
<tr>
<td>CTATAAAACCTTTACAT</td>
<td>1/2 x 7/8 x 0 x 0 x 1/8 x 0</td>
<td>0</td>
</tr>
<tr>
<td>CTATAAACCTTTACAT</td>
<td>1/2 x 1/8 x 3/8 x 0 x 1/8 x 0</td>
<td>0</td>
</tr>
<tr>
<td>CTATAAACCTTTACAT</td>
<td>1/8 x 7/8 x 3/8 x 0 x 3/8 x 0</td>
<td>0</td>
</tr>
<tr>
<td>CTATAAACCTTTACAT</td>
<td>1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8</td>
<td>.0336</td>
</tr>
<tr>
<td>CTATAAACCTTTACAT</td>
<td>1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8</td>
<td>.0299</td>
</tr>
<tr>
<td>CTATAAACCTTTACAT</td>
<td>1/2 x 0 x 1/2 x 0 1/4 x 0</td>
<td>0</td>
</tr>
<tr>
<td>CTATAAACCTTTACAT</td>
<td>1/8 x 0 x 0 x 0 x 1/8 x 0</td>
<td>0</td>
</tr>
<tr>
<td>CTATAAACCTTTACAT</td>
<td>1/8 x 1/8 x 0 x 0 x 3/8 x 0</td>
<td>0</td>
</tr>
<tr>
<td>CTATAAACCTTTACAT</td>
<td>1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8</td>
<td>.0004</td>
</tr>
</tbody>
</table>
P-Most Probable l-mer

- The P-Most Probable 6-mer in the sequence is thus AAACCTCT:

| String, Highlighted in Red | Calculations | $\text{Prob}(a|P)$ |
|------------------------------|-------------------------------|-------------------|
| CTATAAACCTTTACAT | $\frac{1}{8} \times \frac{1}{8} \times \frac{3}{8} \times 0 \times \frac{1}{8} \times 0$ | 0 |
| CTATAAAACCTTTACAT | $\frac{1}{2} \times \frac{7}{8} \times 0 \times 0 \times \frac{1}{8} \times 0$ | 0 |
| CTATAAAACCTTTACAT | $\frac{1}{2} \times \frac{1}{8} \times \frac{3}{8} \times 0 \times \frac{1}{8} \times 0$ | 0 |
| CTATAAACCTTTACAT | $\frac{1}{8} \times \frac{7}{8} \times \frac{3}{8} \times 0 \times \frac{3}{8} \times 0$ | 0 |
| **CTATAAACCTTTACAT** | $\frac{1}{2} \times \frac{7}{8} \times \frac{3}{8} \times \frac{5}{8} \times \frac{3}{8} \times \frac{7}{8}$ | **.0336** |
| CTATAAACCTTTACAT | $\frac{1}{2} \times \frac{7}{8} \times \frac{1}{2} \times \frac{5}{8} \times \frac{1}{4} \times \frac{7}{8}$ | **.0299** |
| CTATAAACCTTTACAT | $\frac{1}{2} \times 0 \times \frac{1}{2} \times 0 \times \frac{1}{4} \times 0$ | 0 |
| CTATAAAACCTTTACAT | $\frac{1}{8} \times 0 \times 0 \times 0 \times \frac{1}{8} \times 0$ | 0 |
| CTATAAACCTTTACAT | $\frac{1}{8} \times \frac{1}{8} \times 0 \times 0 \times \frac{3}{8} \times 0$ | 0 |
| **CTATAAACCTTTACAT** | $\frac{1}{8} \times \frac{1}{8} \times \frac{3}{8} \times \frac{5}{8} \times \frac{1}{8} \times \frac{7}{8}$ | **.0004** |
Dealing with Zeroes

• In our toy example $\Pr(a \mid P) = 0$ in many cases.

• In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is small.

• To avoid many entries with $\Pr(a \mid P) = 0$, there exist techniques to equate zero to a very small number so that having one zero in the profile matrix does not make the entire probability of a string zero (we will not address these techniques here).
P-Most Probable l-mers in Many Sequences

- Find the P-most probable l-mer in each of the sequences.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1/2</td>
<td>1/8</td>
<td>1/8</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>0</td>
<td>1/8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3/8</td>
<td>1/2</td>
<td>0</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5/8</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>1/8</td>
<td>3/8</td>
<td>7/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

CTATAAACGTTACATC
ATAGCGATTCCGACTG
CAGCCCCAGAACCTCT
CGGTATACTTACATC
TGCAATTCAATAGCTTA
TATCCTTCCACTCCT
CTCCCAATCCCCTTACA
GGTCATCCTTTATCCT
P-Most Probable l-mers in Many Sequences

- The P-Most Probable l-mers form a new profile.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>c</th>
<th>g</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>c</td>
<td>g</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>t</td>
<td>a</td>
<td>g</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>t</td>
<td>a</td>
<td>g</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>t</td>
<td>g</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>t</td>
<td>c</td>
<td>c</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>8</td>
<td>t</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5/8</td>
<td>5/8</td>
<td>4/8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>4/8</td>
<td>6/8</td>
<td>4/8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>1/8</td>
<td>3/8</td>
<td>0</td>
<td>0</td>
<td>3/8</td>
<td>6/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>2/8</td>
<td>0</td>
<td>0</td>
<td>2/8</td>
<td>1/8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CTATAAACGT'TACATC
ATAGCGAT'TCGACTG
CAGCCCAGAACCTC
CGGTAACCTTACATC
TGCATTCAATAGCTTA
TGTCCCTGTCACACTAC
CTCCAAATCCTTTTACA
GGTCTACCTTTTATCCT
Comparing New and Old Profiles

- **Red** = frequency increased, **Blue** – frequency decreased

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>g</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>t</td>
<td>a</td>
<td>g</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>t</td>
<td>a</td>
<td>g</td>
<td>c</td>
<td>t</td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>t</td>
<td>g</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>t</td>
<td>c</td>
<td>c</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>8</td>
<td>t</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>5/8</th>
<th>5/8</th>
<th>4/8</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>4/8</td>
<td>6/8</td>
<td>4/8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>1/8</td>
<td>3/8</td>
<td>0</td>
<td>0</td>
<td>3/8</td>
<td>6/8</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>2/8</td>
<td>0</td>
<td>0</td>
<td>2/8</td>
<td>1/8</td>
<td>2/8</td>
<td></td>
</tr>
</tbody>
</table>

Red = frequency increased, Blue = frequency decreased
Greedy Profile Motif Search

- Use P-Most probable l-mers to adjust start positions until we reach a “best” profile; this is the motif.
 1. Select random starting positions.
 2. Create a profile P from the substrings at these starting positions.
 3. Find the P-most probable l-mer a in each sequence and change the starting position to the starting position of a.
 4. Compute a new profile based on the new starting positions after each iteration and proceed until we cannot increase the score anymore.
GreedyProfileMotifSearch Algorithm

1. **GreedyProfileMotifSearch**(DNA, t, n, l)
2. Randomly select starting positions s=(s₁,…,sₜ) from DNA
3.   bestScore ← 0
4. while Score(s, DNA) > bestScore
5.   Form profile P from s
6.   bestScore ← Score(s, DNA)
7.   for i ← 1 to t
8.     Find a P–most probable l–mer a from the iᵗʰ sequence
9.     sᵢ ← starting position of a
10. return bestScore
GreedyProfileMotifSearch Analysis

• Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.

• It is actually unlikely that the random starting positions will lead us to the correct solution at all.

• Therefore this is a *Monte Carlo* algorithm.

• In practice, this algorithm is run many times with the hope that random starting positions will be close to the optimal solution simply by chance.
Section 4: Gibbs Sampler
Gibbs Sampling

- GreedyProfileMotifSearch is probably not the best way to find motifs.

- However, we can improve the algorithm by introducing **Gibbs Sampling**, an iterative procedure that discards one l-mer after each iteration and replaces it with a new one.

- Gibbs Sampling proceeds more slowly and chooses new l-mers at random, increasing the odds that it will converge to the correct solution.
Gibbs Sampling Algorithm

1. Randomly choose starting positions \(s = (s_1, \ldots, s_t) \) and form the set of \(l \)-mers associated with these starting positions.
2. Randomly choose one of the \(t \) sequences.
3. Create a profile \(P \) from the other \(t - 1 \) sequences.
4. For each position in the removed sequence, calculate the probability that the \(l \)-mer starting at that position was generated by \(P \).
5. Choose a new starting position for the removed sequence at random based on the probabilities calculated in Step 4.
6. Repeat steps 2-5 until there is no improvement.
Gibbs Sampling: Example

- **Input**: \(t = 5 \) sequences, motif length \(l = 8 \)
 1. GTAAACAATATTTATAGC
 2. AAAATTTACCTCGCAAGG
 3. CCGTACTGTCAAGCGTGG
 4. TGAGTAAACGACGTCCCA
 5. TACTTAACACCCTGTCAA
Gibbs Sampling: Example

1. Randomly choose starting positions, $s=(s_1, s_2, s_3, s_4, s_5)$ in the 5 sequences:

$s_1=7$	GTAAACAAATATTTATAGC
$s_2=11$	AAAATTTACCTTAGAAGG
$s_3=9$	CCGTACTGTCAAGCGTGG
$s_4=4$	TGAGTAAACGAAGTCCCA
$s_5=1$	TACTTAAACCCTGTCAAA
Gibbs Sampling: Example

2. Choose one of the sequences at random

\[s_1 = 7 \quad \text{GTAAACAATATTATAGC} \]
\[s_2 = 11 \quad \text{AAAATTACCTTAGAAGG} \]
\[s_3 = 9 \quad \text{CCGTACTGTCAAGCGTGG} \]
\[s_4 = 4 \quad \text{TGAGTAAACGACGTCCCA} \]
\[s_5 = 1 \quad \text{TACTTAAACCCTGTCAA} \]
Gibbs Sampling: Example

2. Choose one of the sequences at random: **Sequence 2**

\[s_1 = 7 \quad \text{GTAAACAATATTTATAGC} \]
\[s_2 = 11 \quad \text{AAAATTTACCTTAGAAGG} \]
\[s_3 = 9 \quad \text{CCGTACTGTCAAGCGTG} \]
\[s_4 = 4 \quad \text{TGAGTAAACGACGTCCCA} \]
\[s_5 = 1 \quad \text{TACTTAACCCTGTCAA} \]
Gibbs Sampling: Example

3. Create profile P from l-mers in remaining 4 sequences:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>1/4</td>
<td>2/4</td>
<td>2/4</td>
<td>3/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>2/4</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>2/4</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>T</td>
<td>2/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>2/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>G</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
</tr>
<tr>
<td>Consensus String</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>G</td>
<td>A</td>
</tr>
</tbody>
</table>
Gibbs Sampling: Example

4. Calculate $\Pr(a \mid P)$ for every possible 8-mer in the removed sequence:

<table>
<thead>
<tr>
<th>Strings Highlighted in Red</th>
<th>$\Pr(a \mid P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAATTTACCTTTAGAAGG</td>
<td>.000732</td>
</tr>
<tr>
<td>AAAATTTACCTTTAGAAGG</td>
<td>.000122</td>
</tr>
<tr>
<td>AAAATTTACCTTTAGAAGG</td>
<td>0</td>
</tr>
</tbody>
</table>
Gibbs Sampling: Example

5. Create a distribution of probabilities of l-mers $\Pr(a \mid P)$, and randomly select a new starting position based on this distribution.

 - To create this distribution, divide each probability $\Pr(a \mid P)$ by the lowest probability:

 Starting Position 1: $\Pr(\text{AAAATTTA} \mid P) / .000122 = .000732 / .000122 = 6$
 Starting Position 2: $\Pr(\text{AAATTTAC} \mid P) / .000122 = .000122 / .000122 = 1$
 Starting Position 8: $\Pr(\text{ACCTTTAGA} \mid P) / .000122 = .000183 / .000122 = 1.5$

 - Ratio = 6 : 1 : 1.5
Turning Ratios into Probabilities

- Define probabilities of starting positions according to the computed ratios.

 \[
 \Pr(\text{Selecting Starting Position 1}): \frac{6}{6+1+1.5} = 0.706 \\
 \Pr(\text{Selecting Starting Position 2}): \frac{1}{6+1+1.5} = 0.118 \\
 \Pr(\text{Selecting Starting Position 8}): \frac{1.5}{6+1+1.5} = 0.176
 \]

- Select the start position probabilistically based on these ratios.
Gibbs Sampling: Example

• Assume we select the substring with the highest probability—then we are left with the following new substrings and starting positions.

\[s_1 = 7 \quad \text{GTAAACAATATTTATAGC} \]
\[s_2 = 1 \quad \text{AAAATTTACCTCGCAAGG} \]
\[s_3 = 9 \quad \text{CCGTACTGTCAAGCGTGG} \]
\[s_4 = 5 \quad \text{TGAAGTAATCGACGTCCCA} \]
\[s_5 = 1 \quad \text{TACTTTCACCCTGTCAA} \]
Gibbs Sampling: Example

6. We iterate the procedure again with the above starting positions until we cannot improve the score.
Gibbs Sampling in Practice

- Gibbs sampling needs to be modified when applied to samples with unequal distributions of nucleotides (*relative entropy* approach).

- Gibbs sampling often converges to locally optimal motifs rather than globally optimal motifs.

- Needs to be run with many randomly chosen seeds to achieve good results.
Section 5: Random Projections
Another Randomized Approach

- **Random Projection Algorithm** is an alternative way to solve the Motif Finding Problem.
- **Guiding Principle:** Some instances of a motif agree on a subset of positions.
 - However, it is unclear how to find these “non-mutated” positions.
- To bypass the effect of mutations within a motif, we randomly select a subset of positions in the pattern, creating a projection of the pattern.
- We then search for the projection in a hope that the selected positions are not affected by mutations in most instances of the motif.
Projections: Formation

- Choose k positions in a string of length l.

- Concatenate nucleotides at the chosen k positions to form a k-tuple.

- This can be viewed as a projection of l-dimensional space onto k-dimensional subspace.

- Projection = $(2, 4, 5, 7, 11, 12, 13)$
Random Projections Algorithm

• Select \(k \) out of \(l \) positions uniformly at random.

• For each \(l \)-tuple in input sequences, hash into bucket based on letters at \(k \) selected positions.

• Recover motif from *enriched* bucket that contains many \(l \)-tuples.
Random Projections Algorithm

- Some projections will fail to detect motifs but if we try many of them the probability that one of the buckets fills in is increasing.

- In the example below, the bucket **GC*AC is “bad” while the bucket AT**G*C is “good”
Random Projections Algorithm: Example

- $l = 7$ (motif size), $k = 4$ (projection size)
- Projection: $(1, 2, 5, 7)$
Hashing and Buckets

• Hash function $h(x)$ is obtained from k positions of projection.

• Buckets are labeled by values of $h(x)$.

• **Enriched Buckets**: Contain more than s l-tuples, for some decided upon parameter s.

![Diagram showing ATTC, CATC, ATGC, GCTC]
Motif Refinement

- How do we recover the motif from the sequences in the enriched buckets?

- k nucleotides are from hash value of bucket.

- Use information in other $l-k$ positions as starting point for local refinement scheme, e.g. Gibbs sampler.
Synergy Between Random Projection and Gibbs

• Random Projection is a procedure for finding good starting points: Every enriched bucket is a potential starting point.

• Feeding these starting points into existing algorithms (like Gibbs sampler) provides a good local search in vicinity of every starting point.

• These algorithms work particularly well for “good” starting points.
Building Profiles from Buckets

<table>
<thead>
<tr>
<th>Sequence</th>
<th>ATCCGAC</th>
<th>ATGAGGC</th>
<th>ATAAGTC</th>
<th>ATGTCGAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATGC</td>
<td>ATCCGAC</td>
<td>ATGAGGC</td>
<td>ATAAGTC</td>
<td>ATGTCGAC</td>
</tr>
</tbody>
</table>

Profile P

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>1</th>
<th>0</th>
<th>0.25</th>
<th>0.50</th>
<th>0</th>
<th>0.50</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.25</td>
<td>0</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Gibbs sampler

Refined profile P^*
Motif Refinement

• For each bucket h containing more than s sequences, form profile $P(h)$.

• Use Gibbs sampler algorithm with starting point $P(h)$ to obtain refined profile P^*.
Random Projection Algorithm: A Single Iteration

• Choose a random k-projection.

• Hash each l-mer x in input sequence into bucket labeled by $h(x)$.

• From each enriched bucket (e.g., a bucket with more than s sequences), form profile P and perform Gibbs sampler motif refinement.

• Candidate motif is best found by selecting the best motif among refinements of all enriched buckets.
Choosing Projection Size

- Choose k small enough so that several motif instances hash to the same bucket.

- Choose k large enough to avoid contamination by spurious l-mers:

$$4^k \gg t(n - l + 1)$$
How Many Iterations?

• **Planted Bucket**: Bucket with hash value $h(M)$, where M is the motif.

• Choose $m =$ number of iterations, such that $\Pr(\text{planted bucket contains at least } s \text{ sequences in at least one of } m \text{ iterations}) = 0.95$

• This probability is readily computable since iterations form a sequence of independent *Bernoulli trials*.
Expectation Maximization (EM)

• \(S = x(1), \ldots x(t) \) : set of input sequences

• **Given**: A probabilistic motif model \(W(\Theta) \) depending on unknown parameters \(\Theta \), and a background probability distribution \(P \).

• Find value \(\Theta_{\text{max}} \) that maximizes the likelihood ratio:

\[
\frac{\Pr(S \mid W(\Theta_{\text{max}}), P)}{\Pr(S \mid P)}
\]

• EM is local optimization scheme. Requires starting value \(\Theta_0 \).
EM Motif Refinement

• For each input sequence $x(i)$, return l-tuple $y(i)$ which maximizes likelihood ratio:
 • $T = \{ y(1), y(2), \ldots, y(t) \}$
 • $C(T) =$ consensus string

\[
\frac{\Pr(y(i) \mid W(\Theta^*_h))}{\Pr(y(i) \mid P)}
\]