VI. 1.1

Suppose G is bounded open (not necessarily connected),
$f: \text{analytic on } G, \text{continuous on } \overline{G}, \text{non constant}$.

Want: "$ f \) has zero in G or $\Rightarrow |f| \) assumes its minimum on ∂G."

If f has zero in \overline{G}, then it's clear that it satisfies either 1 or 2).

2. Suppose f is nowhere zero in \overline{G}. Then $1/f$ is analytic on G and continuous on compact set \overline{G}. \[\Rightarrow |1/f| \) assume its maximum, say $|1/f| = C \] for some $x \in \overline{G}$. If $x \in G = \bigcup G_a$ where G_a: connected component of G, hence open, then $x \in G_a$ for some a. Since $1/f: G_a \to C \) assume its maximum, by MMP $1/f$ is constant on G_a. By continuity of $1/f$ on \overline{G}, $1/f$ is constant on $\partial G_a \subset \partial G$ \[\Rightarrow |1/f| = |1/f(y)| = C \] for some $y \in \partial G$.

(by topological reason)

= $|f| \) assume its maximum on ∂G, equivalently \[\Rightarrow \] holds \[\text{(MMP)} \]
Suppose \(\exists \) analytic \(f: \mathbb{D} \to \mathbb{D} \) s.t. \(f\left(\frac{1}{3}\right) = \frac{3}{4} \), \(f'(\frac{1}{3}) = \frac{2}{3} \).

Define \(h: \mathbb{D} \to \mathbb{D} \) by \(h = \psi_{\frac{3}{4}} \circ f \circ \psi_{-\frac{1}{3}} = \psi_{\frac{3}{4}} \circ f \circ \psi_{-\frac{1}{3}} \).

Then \(h(0) = 0 \), hence satisfies condition for Schwartz's lemma.

In particular, we have \(|h(0)| \leq 1 \). By chain rule,

\[
|h'(0)| = |\psi_{\frac{3}{4}}'(\frac{3}{4})| \cdot |f'(\frac{1}{3})| \cdot |\psi_{-\frac{1}{3}}'(0)| = \frac{1}{1 - (\frac{3}{4})^2} \cdot f'(\frac{1}{3}) \cdot (1 - (\frac{3}{4})^2) \\
\Rightarrow |f'(\frac{1}{3})| = \frac{1 - \frac{9}{16}}{1 - \frac{1}{4}} \cdot |h'(0)| \leq \frac{7}{12}.
\]

On the other hand, \(f'(\frac{1}{3}) \) was given by \(\frac{2}{3} > \frac{7}{12} \).

\(\therefore \) such analytic function \(f \)
Suppose f is analytic in some region containing $\overline{B(0)}$, and $|f(z)| = 1 \quad \forall z \in \overline{D}$.

Case 1: f has no zero in \overline{D}.

We claim that f is constant function. Otherwise, by VI.1.1,

If f should assume minimum on $\partial \overline{D} = \{ z : |z| = 1 \}$, then $|f(z)| \geq 1 \quad \forall z \in \overline{D}$.

But also MMP implies $|f(z)| \leq 1 \quad \forall z \in \overline{D}$. Hence f is not constant function, $|f(z)| = 1 \quad \forall z \in \overline{D}$. But this cannot happen by open mapping theorem. Thus f is constant.

Case 2: General case.

If f has infinitely many zeros in \overline{D}, then by compactness, it admits some accumulated point hence $f \equiv 0$ by identity theorem. (Here we used f is analytic on the neighborhood of \overline{D}).

Then $h(z) := \frac{f(z)}{\prod_{i=1}^{\infty} p_i(z)}$ satisfies all the condition for case 1.

(Most importantly, $p_i(z)$ has unique simple zero at z_i and

$|p_i(z)| = 1 \quad \forall |z| = 1$)

So $h(z) \equiv C$, equivalently $f(z) = C \cdot \prod_{i=1}^{n} p_i(z)$.

Therefore, $f(z) = C \cdot \prod_{i=1}^{n} p_i(z)$ for some $C \in \mathbb{C}$, $z \in \overline{D}$.