VI.3.6 \[f: B(c,R) \to \mathbb{C} \text{ analytic, not constant. Define } I(r) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})| \, d\theta \text{ for } r < R. \]

Consider \(A := \{ r : 0 \leq r < R, \exists \theta \text{ s.t. } f(re^{i\theta}) = 0 \} \subseteq \{0, \ldots, R\} \).

Then \(A \) is discrete subset in \((0,R) \) if \(c \) otherwise, \(f \) has infinitely many zero in closed ball which implies \(f = 0 \) by \(r \notin A \).

For each \(r \in (0,R) \setminus A \), define continuous function \(\psi_r: [0,2\pi] \to \mathbb{S} \) by \(\psi_r(\theta) := \frac{|f(re^{i\theta})|}{f(re^{i\theta})} \).

Define \(F_r(z) := \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) \psi_r(\theta) \, d\theta \) on \(B(c,R) \). Then \(F \) is clearly analytic.

Also define \(M_r(r') := \sup_{\theta} |F_r(e^{i\theta})| \). Note following two facts:

1. \(M_r(r') \leq I(r') \quad \forall r' \)

\[\quad (\because \text{ for } |z| = r', \quad |F_r(z)| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})| \psi_r(\theta) \, d\theta = I(r'), \quad \text{take supremum}) \]

2. \(M_r(r) = I(r) \)

\[\quad (\because F(0) = I(0) \text{ by def } \Rightarrow M_r(0) = I(0)) \]

Pick any \(0 < r_1 < r < r_2 < R \) where \(r \notin A \). Then, we have following:

\[(\log r_2 - \log r_1) \log I(r) = (\log r_2 - \log r_1) \log M_r(r) \leq (\log r - \log r_1) \log M_r(r_1) + (\log r_2 - \log r) \log M_r(r) \]

\[r \notin A \quad (\text{F(z) analytic}) \]

\[\leq (\log r - \log r_1) \log I(r_1) + (\log r_2 - \log r_1) \log I(r) \]

But since \(A \) is discrete subset of \((0,R)\), for \(r \notin A \), we can take limit of above inequality. \(\log I(r) \) is logr convex w.r.t.
Now, let's prove monotonic increasing property of \(I(r) \). Suppose not. Then \(\exists \epsilon < \delta \) s.t. \(I(r) > I(r_\epsilon) \). By continuity of \(I(r) \) \((\text{check this!}) \), \(\exists \delta > 0 \) s.t. if \(|r - r_\epsilon| < \delta \) then \(I(r) > I(r_\epsilon) \). By discreteness of \(A \subseteq (0, R) \), \(\exists \epsilon \in (0, R) \backslash A \) s.t. \(r_\epsilon - \delta < r < r_\epsilon \).

Then,

1. \[M_r(r) = I(r) > I(r_\epsilon) \]
2. \[M_r(r) \leq I(r_\epsilon) \]
3. \[M_r(r_\epsilon) \leq I(r_\epsilon) \]

But this contradicts that \(M_r \) is monotonic increasing by MMP: \(I(r) \) is monotonically increasing.

To prove \(I(r) \) is actually strict, again suppose not. Then \(\exists \epsilon < \delta \) s.t. \(I(r) = I(r_\epsilon) \).

By monotonicity above, \(I(r) \) is constant in interval \([r, r_\epsilon] \). By shrinking \([r, r_\epsilon] \), if necessary, we may assume that \([r, r_\epsilon] \cap A = \emptyset \).

Claim: \(\exists \epsilon \in (r, r_\epsilon) \) s.t. \(M_r \) is not constant.

• Suppose \(M_r \) is constant \(\forall \epsilon \in [r, r_\epsilon) \). Then,

\[
M_r(r_\epsilon) = \frac{1}{2\pi} \int_0^{2\pi} f(r e^{i\theta}) e_r^{i\theta} r_\epsilon \, d\theta = \frac{1}{2\pi} \int_0^{2\pi} f(r e^{i\theta}) e_r(0, -\tau) \, d\theta
\]

\[
M_r(r) = \frac{1}{2\pi} \int_0^{2\pi} f(r e^{i\theta}) \epsilon_r(0, \tau) \, d\theta = \frac{1}{2\pi} \int_0^{2\pi} |f(r e^{i\theta})| \, d\theta.
\]

Since integrand \((*) \) has modulus \(|f(r e^{i\theta})| \), for integral to be same, we need to have \(f(r e^{i\theta}) \epsilon_r(0, -\tau) = |f(r e^{i\theta})| = \epsilon_r(0, \tau) f(r e^{i\theta}) \) \(\forall \tau \epsilon \).

\[\epsilon_r(0, -\tau) = \epsilon_r(0, \tau) \Rightarrow \epsilon_r \text{ is constant } \forall \tau \epsilon \]

It is very special kind of function which sends each circle to line. (i.e. For fixed \(r \), angular \(\epsilon_r(0, \tau) \) is constant)

We will argue briefly why such function should be constant. Therefore claim is proven.
\[f : \mathbb{C} \rightarrow \mathbb{C} \text{ analytic s.t. } \forall r \in (r_1, r_2), \exists \theta \text{ s.t. } \text{Angular}(f(re^{i\theta})) = 0 \]

\[\Rightarrow f \text{ is constant.} \]

Sketch of proof: Since \(f \) sends circle to line of constant angle, by conformality of analytic function, \(f \) sends angle to circle. i.e. we have function \(r : [0, 2\pi] \rightarrow [0, \infty) \) s.t.

\[\text{Angle}(z) = \theta \Rightarrow |f(z)| = r(\theta). \]

Clearly, function \(r \) is constant, hence attain maximum. Say \(r(\theta_0) \) is the maximum. Then \(|f(re^{i\theta_0})| : \text{maximum} \)

for any \(r_1 < r < r_2 \). By MMP, \(f \) is constant.
\[\text{VII.5} \quad \text{Supp } f_n \to f \text{ in } C(G, \mathbb{R}), \ z_n \to z \text{ in } G. \]

Pick any \(\delta > 0 \). \(\text{Want: } d(f_n(z), f(z)) < \delta \text{ for } n \to \infty. \)

Pick any \(K^+ \subseteq G \) s.t. \(z \in \text{int}(K) \). Then \(z_n \notin K \) for \(n \geq N_1 \) by convergence.

For given \(K^+ \), \(\delta > 0 \), \(\exists \varepsilon > 0 \) s.t. \(\rho(q, h) < \varepsilon \implies \rho_K(f_q, f_h) < \delta. \)

By convergence \(f_n \to f \), \(\rho(f_q, f_h) < \varepsilon \) for \(n \geq N_2 \), hence \(\rho_K(f_n, f) < \delta. \)

In particular, \(d(f_n(z), f(z)) < \delta \) if \(n \geq \max\{N_1, N_2\} \) (\(= z \in K \)).

By continuity of \(f \), \(d(f(z), f(z)) < \delta \) if \(n \geq N_3. \)

\(\implies \) If \(n \geq \max\{N_1, N_2, N_3\} \), then \(d(f(z), f(z)) \leq d(f(z), f(z_n)) + d(f(z_n), f(z)) < 2\delta. \)

\(= f(z_n) \to f(z) \text{ in } G. \]

\[\text{VII.6} \quad \text{(Darboux's theorem)} \quad \text{Supp } f_n \in C(G, \mathbb{R}), f_n \to f_n, \ \exists \varepsilon \in C(G, \mathbb{R}) \text{ s.t. } \lim_{n \to \infty} f_n = f. \]

\(\text{Want: } f_n \to f \text{ in } C(G, \mathbb{R}), \text{ equivalently, } \forall K^+, \rho_K(f_n, f) \to 0 \text{ as } n \to \infty. \)

By using compactness argument, this is also equivalent to \(\text{locally uniform convergence}. \)

i.e., \(\forall z \in G, \exists \text{ open nbd } U \ni z \text{ s.t. } \rho_U(f_n, f) \to 0 \text{ as } n \to \infty. \)

\(\text{Pick any } z \in G. \text{ Let } \varepsilon > 0. \text{ By continuity of } f, \exists U \ni z \text{ s.t. } \forall w \in U \implies |f(z) - f_w| < \varepsilon. \)

By \(f_n(z) \to f(z), |f(z) - f_n(z)| < \varepsilon_2 \text{ for some } n \geq N \). Also, by continuity of \(f_N, \)

\(\exists \text{ open set } V : z \in V \subseteq U \text{ s.t. } \forall w \in V \implies |f_N(z) - f_N(w)| < \varepsilon_2. \)

\(\implies \forall w \in V, |f_N(w) - f(w)| \leq |f_N(z) - f_N(w)| + |f_n(z) - f(z)| + |f(z) - f(w)| \leq \varepsilon_2 + \varepsilon_2 + \varepsilon = 2\varepsilon. \)

\(\implies \text{by monotonicity of } |f_n|, \text{ we know } \rho_V(f_n, f) \text{ decreases only. } \)

This proves that \(\rho_V(f_n, f) \to 0 \text{ as } n \to \infty \implies f_n \to f \text{ in } C(G, \mathbb{R}). \)