One direction is clear. If \(f_n \rightarrow f \) in \(H(G) \), then \(f_n \rightarrow f \) \(L^2 \) is compact.

Suppose \(f_n \rightarrow f \) \(L^2 \) rectifiable curve in \(G \). To show that \(f_n \rightarrow f \) in \(H(G) \), pick any \(\overline{B}(r, 2r) \subseteq G \). Pick any \(z \in \overline{B}(r, 2r) \) where \(r < R \). By Cauchy integral formula,

\[
|f_n(z) - f(z)| = \left| \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f_n(w) - f(w)}{w-z} \, dw \right| \leq \frac{1}{2\pi} \cdot 2\pi r \cdot \sup_{w \in \partial \Omega} |f_n - f| \xrightarrow{r \to 0} 0 \quad \text{as} \ n \to \infty
\]

b/c \(f_n \Rightarrow f \) by assumption. And more importantly, this is independent of \(z \in \overline{B}(r, 2r) \).

We've proven \(f_n \Rightarrow f \) \(L^2 \) in \(G \), so \(f_n \) converge to \(f \) locally uniformly, hence \(f_n \rightharpoonup f \)

Suppose \(f_n \rightharpoonup f \) in \(H(G) \). Then \(\exists k \in \mathbb{C}^+ \) s.t. \(f_n \neq f \), i.e., \(\|f_n - f\| \neq 0 \).

\[\exists \varepsilon > 0 \quad \text{such that} \quad \|f_n - f\| > \varepsilon \quad \text{for all} \ n \in \mathbb{N}\]

On the other hand, \(f_n \) locally \(\Rightarrow \) normal \(\Rightarrow \) Every sequence has "most!" convergent subsequence.

In particular, \(f_n \) \(\subseteq f_n \) has convergent subsequence, say \(f_n \rightharpoonup f \).

Put \(f_n \rightharpoonup g \) in \(H(G) \). By assumption, \(f(z) = g(z) \) \(\forall z \in A \) and then by identity principle, \(f = g \). \(\Rightarrow f_n \rightharpoonup f \) in \(H(G) \), hence \(f_n \rightharpoonup f \).

But this contradicts that \(\|f_n - f\| > \varepsilon \) \(\forall n \). \(\therefore f_n \rightharpoonup f \) in \(H(G) \)
Suppose \(f_n \to f \) in \(H(G) \) and \(f_n \) is 1-1 \(\forall n \). To prove by contradiction,

if \(f \) is neither 1-1 nor constant. Then \(\exists a \neq b \in G \) s.t. \(f(a) = f(b) = x \)

Clearly, \(f_n(a) \to f(a) \). Then \(f_n \) is still 1-1 and \(g \to 0 \).

Let's separate \(a, b \) which are zeros so that \(ab \) is the only zero in \(G \).

Then, by Hurwitz's theorem, \(\exists N \) s.t.

\[
\# \text{ of Zero } (g_n, B(a, r)) = \# \text{ of Zero } (g, B(a, r)) \geq 1
\]

\[
\# \text{ of Zero } (g_n, B(b, r)) = \# \text{ of Zero } (g, B(b, r)) \geq 1
\]

\[
\exists a' \in B(a, r) \text{ s.t. } g_n(a') = 0 \\
\exists b' \in B(b, r) \text{ s.t. } g_n(b') = 0
\]

\[
f_n(a') = f_n(b') \text{ but } a' \neq b' \text{ by separation. This contradicts that } f_n \text{ is 1-1.}
\]