For \(G \subseteq \mathbb{C} \) region, define for \(f \in M(G) \subseteq C(G, C_0) \) the continuous function \(\mu_f : G \to \mathbb{R} \) by

\[
\mu_f(z) = \begin{cases}
\frac{2 \Im(f(z))}{1 + |f(z)|^2} & z \text{ not a pole} \\
\frac{2}{\Re f(z)} & z \text{ pole of order 1} \\
0 & z \text{ pole of order } \geq 2.
\end{cases}
\]

Theorem 1. A family \(F \subseteq M(G) \) is normal \(\implies \)
\(\{ \mu_f : f \in F \} \) locally hold.

Proof. \(\Leftarrow \): Lecture 11.

\(\Rightarrow \):

Claim: \(f_n \to f \text{ in } M(G) \implies \mu_{f_n} \to \mu_f \text{ in } C(G) \)

Proof: Sufficient to show \(\forall \alpha \in G \exists B(\alpha, r) \subseteq G, s.t., \mu_{f_n} \to \mu_f \text{ uniformly in } B(\alpha, r). \)

\(1 \) \(\alpha \) is not a pole of \(f \). Then, \(F(B(\alpha, r)), M > 0 \) s.t.

\[|f_n(z)|, |f(z)| \leq M \quad \text{ and } \quad f_n \to f \text{ uniformly in } B(\alpha, r). \]

Note that \(w(\omega z) = \frac{\omega w_1}{1 + \omega w_2}z \) is unif. cont. in \(\{ w_1, w_2 : 1 \leq R \}

Since \(f_n \to f \), \(f_n \to f \text{ uniformly in } B(\alpha, r) \Rightarrow \)

12.1. \(f_n \rightrightarrows \frac{f_n}{f} \text{ uniformly in } B(\alpha, r). \)

\[1 + \frac{1}{n^2} \to \mu_f = \frac{1}{1 + \frac{1}{n^2}} \begin{array}{c}
(2) \text{ a } \varphi \text{ pole of } f. \text{ Consider } \frac{1}{f} \text{ and } \frac{1}{f_n}, \text{ and note } \mu_{\frac{1}{f}} = \mu_f. \text{ By above, } \mu_f = \mu_{\frac{1}{f_n}} \to \mu_{\frac{1}{f_n}} = \mu_f. \end{array} \]

To prove \(\implies \) in Thm 1, suppose \(f \) normal, but \(\{\mu_{\frac{1}{f_n}}: \frac{1}{f_n} \in E\} \) not locally closed. Then, \(f \in \mathcal{C}G \), \(z_n \to a \), then \(w \) \(\mu_{\frac{1}{f_n}}(z_n) \to h \). But \(f \) normal \(\implies \exists \text{ subseq. } \{f_n\} \) s.t. \(f_n \to f \) in \(\mathcal{C}(\mathcal{G}, \mathcal{C}o) \). Suppose first \(f \neq 0 \), i.e., \(f \in \mathcal{MC}(\mathcal{G}) \). Then, by Claim, \(\mu_{f_n} \to \mu_f \) in \(\mathcal{C}(\mathcal{G}) \).

Take \(K = B(a, r) \subseteq \mathcal{G} \). \(\mu_{f_n} \to \mu_f \) uniform on \(K \) \(\implies \mu_{f_n} \leq M \) \(\forall n \). But \(\mu_{f_n}(z_n) \to \infty \) and \(z_n \to a \). Contradiction. If \(f = 0 \), then consider \(g_n = \frac{1}{f_n} \to g = 0 \).

We again get a contradiction since \(\mu_{g_n} = \mu_{g_n} \).