Lecture 7

Arzela–Ascoli Thm. A family \(F \subseteq C(G, \Omega) \) is normal \(\iff \)

(i) \(\forall z \in G, \{ f(z) : f \in F \} \) is compact.

(ii) \(F \) is equicontinuous.

Pr: \(\Rightarrow \): See Lecture 6 notes.

\[\Leftarrow \]. We shall need the following countable version of Tychonoff's Thm.

Prop 1. Let \(\{ (X_n, d_n) \}_{n=1}^{\infty} \) be sequence of metric spaces, and set

\[X = \bigcap_{n=1}^{\infty} X_n, \quad d(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} \quad \forall x = \{ x_n \}, y = \{ y_n \} \in X. \]

(a) \(\varphi_k \to \varphi \iff \forall n, \lim_{k \to \infty} x_n^k = x_n \)

(b) If each \((X_n, d_n) \) is compact, then \((X, d) \) is compact.

Pr: See Conway (VII.1.119 Prop).

Pr of \(\Leftarrow \) in AAThm: Let \(\{ z_n \} \) be sequence of rational (Re and Imp part) points in \(G \), and set \(X_n = \{ f(z_n) : f \in F \} \subseteq \Omega \), w/ metric \(d = d_G \) by (i), each \((X_n, d_n) \) is compact. Set \(X = \bigcap_{n=1}^{\infty} X_n \)

w/ metric \(d = d_X \) as in Prop 1 \(\Rightarrow (X, d) \) is compact.

Let \(\{ f_k \} \) be sequence in \(F \). Since \(C(G, \Omega) \) is complete,

suffices to show that \(\{ f_k \} \) has subseq. \(\{ f_{k_j} \} \)

that is Cauchy. Let \(\varphi_k = \{ f_k(z_n) : n \in \mathbb{N} \} \in X \).

Since \(X \) compact \(\Rightarrow \) \(\exists \) subsequence \(\{ f_{k_j}(z_n) \}_{n \in \mathbb{N}} \)

that converges \(\varphi_{k_j} \to \varphi_0 \) in \(X \).

Claim: \(\{ f_{k_j} \} \) Cauchy in \(C(G, \Omega) \). \(\Rightarrow \) \(\varphi_0 \).
Claim: \(\{f_{ij}\} \) Cauchy in \(C(G, \Omega) \). (\(\Rightarrow \) ?)

Proof of Claim. By prev. Prop., suffices to show that for any \(\varepsilon > 0 \) and \(\bar{K} \leq K \) compact, \(\exists I \) s.t. \(d_1(p_{k}, p_{k}^*) < \varepsilon, i,j \in I \). We shall replace \(K \) by larger \(K' \leq \bar{K} \) compact as follows:

Let \(R = d(K, C(G)) > 0 \Rightarrow K' = \{ z \in G : d(z, K) \leq R/2 \} \leq \bar{K} \) compact.

If equivalent at every \(z \in G \Rightarrow f \) is uniformly equivalent on compact \(K' \); i.e. \(\exists \delta > 0 \) s.t. \(z, w \in K', |z - w| < \delta \Rightarrow d(f(z), f(w)) < \varepsilon/3, \forall f \in F \). (\(\Rightarrow \) Lebesgue Covering Lemma; see Conway).

Now \(\{ B(z_n, \delta) : z_n \in K' \} \) is open covering of \(K \Rightarrow \exists \)

finite subcover, say, \(K \leq \bigcup_{n=1}^{m} B(z_n, \delta) \) (remembering \(\{ z_n \} \))

Pick \(I \) s.t. \(d(p_{k_i}(z_n), p_{k_j}(z_n)) < \varepsilon/3, \forall n=1, \ldots, m, \) if \(i,j \in I \).

Now, for any \(z \in K \), \(z \in B(z_n, \delta) \) for some \(n=1, \ldots, m \), and

\[
d(f_{k_i}(z), f_{k_j}(z)) \leq d(f_{k_i}(z), f_{k_i}(z_n)) + d(f_{k_i}(z_n), f_{k_j}(z_n)) + d(f_{k_j}(z_n), f_{k_j}(z))
\]

\[
< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.
\]

\(\Rightarrow d(p_{k_i}, p_{k_j}) < \varepsilon \), as desired. \(\Box \)