Recall. A **complex manifold** of dim 1 is a connected Hausdorff space X w/ atlas Φ of charts $\{(U_x, \varphi_x)\}$:

$$
\xymatrix{
U_x \ar[rd]_{\varphi_x} & & X \ar[ld]^\varphi \\
& \mathbb{C} &
}
$$

Transition functions $\varphi_y \circ \varphi_x^{-1}$ are analytic.

Def. If X, Y are complex manifolds, $f: X \rightarrow Y$ cont., then f is analytic if $\forall x \in X \exists$ chart $(U, \varphi_x), (V, \varphi_y)$ on X, Y respectively, s.t.

$x \in U$, $f(x) \in V$ and $\varphi_y \circ f \circ \varphi_x^{-1} : \varphi_x(U) \rightarrow \varphi_y(V)$ analytic.

Prop. Notion is independent of chart chosen.

$$
\xymatrix{
X \ar[r]^-f & Y \\
U_x \ar[r]^-{\varphi_x} & \mathbb{C} \\

U_x \ar[r]^-{\varphi_x} & \mathbb{C} \\
& \mathbb{C} &
}
$$

$$
\alpha = \varphi_y \circ f \circ \varphi_x^{-1} \\
\beta = \psi_y \circ f \circ \psi_x^{-1}
$$
\[g_x : \psi_x \circ \varphi^{-1} \Rightarrow h = \psi_x^{-1} \circ g_x \circ \varphi_x = \]

\[g_x : \psi_x \circ \varphi^{-1} \circ g_x \circ \varphi_x \Rightarrow \text{anal.} \]

\[\text{anal.} \Rightarrow g_x \text{ anal.} \]

Remark: A differentiable manifold of dimension \(n \) can be defined by coordinate charts \(\{ (U_i, \psi_i) \} \), \(\psi_i : U_i \to \psi_i(U_i) \in \mathbb{R}^n \) and "analytic" replaced by "differentiable".

2. Two different atlases \(\Phi, \Phi' \) on \(X \) give same analytic structure if \(\Phi \cup \Phi' \) is an atlas, i.e., their charts are compatible. For example, given \(\Phi = \{ (U, \psi) \} \), you can create \(\Phi' \) by adding chart \((V, \psi) \), where \(V \subseteq U \) and \(\psi : \psi(U) \to \mathbb{R}^n \) is "shrinkable".

Many important results in complex analysis carry over to the setting of complex manifolds:

1. If \(f, g : X \to \mathbb{C} \) analytic, \(Z : = \{ x \in X : f(x) = g(x) \} \) has limit point in \(X \), then \(f = g \). (Uniqueness).

 Proof: Let \(\{ x_n \} \) be seq. in \(Z \) and \(x_n \to x_0 \) in \(X \). Let \((U, \varphi) \) be a chart at \(x_0 \), \((V, \psi) \) chart at \(y_0 = \varphi(x_0) = g(x_0) \). For \(n \geq N \), \(x_n \in U \) and \(y_n = \varphi(x_n) = g(x_n) \in V \). Consider analytic functions \(\tilde{f}(z) = (\varphi \circ f \circ \varphi^{-1})(z) \), \(\tilde{g}(z) = (\varphi \circ g \circ \varphi^{-1})(z) \). They coincide on \(Z \cap \varphi(U) \), \(z_n \to z_0 \in \varphi(U) \Rightarrow \tilde{f} = \tilde{g} \text{ in } \varphi(U) \) by standard uniqueness \(\Rightarrow \tilde{f} = \tilde{g} \text{ in } U \).

 Next, let \(Z' : = \{ x \in X : \exists \text{ open } W \subseteq X, x \in W, f = g \text{ on } W \} \). \(Z' \) is
open by def, nonempty by above. If \(x_0 \) is a limit point of \(Z \), then argument above also shows \(x_0 \in Z' \). Thus, \(Z' \) nonempty open and closed \(\Rightarrow Z' = X \) by connectedness. \(\Box \)

\[(2) \quad \text{If } f : X \to \mathbb{C} \text{ is analytic, } \exists x_0 \in X \text{ s.t. } |f(x_0)| = \sup_{x \in X} |f(x)| \text{ then } f \text{ is constant. (Max Mod Principle).} \]

\[(3) \quad \text{If } X \text{ compact, } f : X \to \mathbb{C} \text{ analytic, then } f \text{ is constant. (Liouville)} \]

\[(4) \quad \text{If } f : X \to \mathbb{C} \text{ is analytic, } U \subseteq X \text{ open, then } f(U) \subseteq \mathbb{C} \text{ is open (open mapping theorem).} \]