\[(a) \ G \text{ is simply connected, hence by Corollary 4.18, } G \text{ is Dirichlet. Also } G \text{ is bounded, so by } \\
\text{Theorem 5.2 there is a Green's function } g_0(z) \text{ on } G \text{ with singularity } \alpha. \\
\begin{align*}
|f(z)| &= |e^{iz} - \alpha - 12 - \alpha| \\
&= e^{-z-\alpha - 12 - \alpha} \quad (z \neq 0) \\
&= e^{-z-\alpha} \\
&= e^{-g_0(z)}
\end{align*}
\]

So \[\lim_{z \to w} f(z) = \lim_{z \to w} e^{-g_0(z)} = 1, \text{ for any } w \in \partial G. \]

For \(0 < r < 1 \), let \(G_r = \{ z : |f(z)| \leq r \} \). \(G_r \) is compact, hence \(f' \) has at most finitely many zeros on \(G_r \). This implies that \(f' \) has at most countably many zeros on \(G \). So there exists \(r \) arbitrarily close to 1, such that \(f(z) \neq 0 \) for all \(z \in G_r \). For such \(r \), \(f \) is locally diffeomorphic for any \(B(z; 8(z)), z \in G_r \).

Then using the fact that \(G_r \) is compact, we can show that each \(z \in G_r \) will induce a simple closed curve in \(G_r \) that contains \(z \). The number of such curves must be finite, otherwise we can show that \(f \) is a constant on \(G \).

Now for \(0 < r < 1 \), let \(G_r = \{ z : |f(z)| \leq r \} \). \(G_r \) is compact, hence \(f' \) has at most finitely many zeros on \(G_r \). So by Rouché's Theorem, \(f \) and \(g \) has the same number of zeros in \(G_r \). Notice that \(f(z) = 0 \) iff \(z = 0 \). So \(f(z) = w \) has unique solution. This means \(f \) is injective on \(G_r \). Since \(r \) is arbitrarily close to 1, we have \(f \) is injective on \(G \), so \(f(z) \neq 0 \) on \(G \). This means that the argument for closed curves work for any \(0 < r < 1 \). Also we have \(f(G) = D \). If \(f'(a) > 0 \) doesn't hold, consider \(f' \frac{g_0}{f'(a)} \).

(b) Suppose \(f(a) = f(b) \), then \(a = e^{f(a)} = e^{f(b)} = b \), so \(f \) is one-one.

If there exists \(z \in G \), such that \(f'(z) = \alpha + 2\pi i \), then \(z = e^{f(z)} = e^{\alpha} = z \), but \((\alpha) = \alpha \), contradiction.

By Open Mapping Theorem, there exists \(\epsilon > 0 \) such that \(B(\alpha; \epsilon) \subseteq f(G) \), then by above argument, for any \(w \in B(\alpha; \epsilon) \), we have \(w \in f(G) \), hence \(B(\alpha + 2\pi i; \epsilon) \cap f(G) = \emptyset \). So \(|g(z)| \leq \frac{1}{\epsilon} \).

On the other hand, \(g'(z) = \frac{1}{f'(z)} \neq 0 \), so \(g \) is conformal map onto a bounded simply connected region.

(c) WLOG, we can say \(\alpha = 0 \), \(G \), otherwise we take a \(e^{\alpha} G \), then consider \(f(z + \alpha) \). Now we can use (b) to find a map \(g \) such that \(f(G) \) is bounded simply connected. Then use part (a) to find \(f \) on \(f(G) \), \(f \circ g \) will satisfy all the requirement.