Barriers.

Def. A barrier for \(G \subseteq C \) at \(a \in \partial C \) is a family
\[
\{ \psi_r \}_{0 < r < r_0} \text{ of super-harmonic functions in } G(a,r) = B(a,r) \setminus \partial C
\]
s.t. \(0 \leq \psi_r \leq 1 \) and
\[
\lim_{z \to a} \psi_r(z) = 0, \quad \lim_{z \to b} \psi_r(z) = 1, \quad \forall b \in \partial B(a,r) \setminus \partial C.
\]

Rem. We extend \(\psi_r \) to superharmonic \(\bar{\psi}_r \) on \(G \) by setting \(\bar{\psi}_r = 1 \) in \(G \setminus G(a,r) \). Easy to check \(\bar{\psi}_r \) superharmonic. (Just need to check super MMP for \(\phi \approx \bar{\phi}_r \) on \(\partial B(a,r) \setminus \partial C \).

Prop. Let \(G \subseteq C \) be region.

(i) If \(\text{DP} \) is solvable in \(G \), then \(G \) has barrier at every \(a \in \partial C \).
(ii) If \(G \) has barrier at \(a \in \partial C \), then \(\lim_{z \to a} u(z) = f(z) \), where \(u(z) \) is Perron function \(u(z) = \sup \{ \phi(z) : \phi \in PC_G(f) \} \)

Pf. (i) For \(r > 0 \) sufficiently small, let \(u(z) \) be solution to \(\text{DP} \) \(\Delta u = 0 \), \(u = f \) on \(\partial G \), where \(f(a) = 0 \), \(0 < f \leq 1 \) in \(\delta G \setminus \partial C \), and \(f(b) = 1 \) for some \(b \in \partial C \).

(If \(a \neq 0 \), then \(f(z) = \frac{|z-a|}{|z+1|} \) will do for any \(\Gamma \).) By Max Princ.,
\[
0 < u(z) < 1 \quad \text{in } G, \quad \lim_{z \to \partial C} u(z) = 0.
\]
Now, let \(c_r := \inf_{z \in \partial B(a,r)} u(z) \).
We have \(0 < c_r < 1 \), since \(u \) extends cont. to compact set \(\overline{\partial B(a,r)} \), and \(0 < u(z) < 1 \) on \(G \) w/ \(u(z) > 0 \) on \(\partial B(a,r) \setminus \partial C \).
Set \(\psi_r(z) := \inf_{c_r} \frac{1}{c_r} \inf_{z \in \partial B(a,r)} u(z) \) in \(G(a,r) \). Check that satisfies req's.

(ii) Let \(\{ \psi_r \}_{0 < r < r_0} \) be barrier w/ extension \(\bar{\psi}_r \) to \(G \). Let \(M := \max f \). \(\forall a \in \partial C \).

WLOG, \(f(a) = 0 \). Pick \(\delta > 0 \) and \(\delta > 0 \) s.t. \(|f(z)| < \varepsilon \) for \(|z-a| < \delta \).
Consider \(\phi_0(z) = -M \bar{\psi}_r - \varepsilon \), where \(\varepsilon < \delta/2 \).

Claim 1. \(\phi_0 \in PC_G(f) \).

Claim 2. \(\phi_0(z) < M \) \(\forall z \in \partial C \).
Claim 1. \(\phi_0 \in P(G_a, f) \).
- \(\phi_0 \) is subharmonic.
- \(\phi_0(z) \leq -M - \epsilon \) in \(G \setminus G(a, r) \) and \(f(z) \geq -M \).
- \(\phi_0(z) \leq -\epsilon \) in \(G(a, r) \) and \(f(z) \geq -\epsilon \).

Consider superharmonic. \(y(z) = M \psi r + \epsilon \). \(\liminf_{z \to b} y(z) \geq f(b) \)
for \(b \not\in G \). By Max. Princ., if \(\phi \in P(a, f) \), then \(\phi \leq \psi_0 \) in \(G \).

Since \(u(z) \) is Perron function \(\Rightarrow -M \psi r - \epsilon \leq u \leq M \psi r + \epsilon \) in \(G \).

Taking \(\lim_{z \to a} u(z) \) \(\Rightarrow -\epsilon \leq \lim_{z \to a} u(z) \leq \epsilon \). Since \(\epsilon > 0 \) and \(f \).

\(\lim_{z \to a} u(z) = 0 = f(a) \).

Cor 1. \(G \subseteq C \) is a **Dirichlet region** (i.e. DP solvable for all \(f \in C(DG_a) \)).

\[\Rightarrow \]

\(G \) has barrier at every \(a \in \partial G \).