Solutions: Homework 3

Nandagopal Ramachandran

October 21, 2019

Problem 1. We say that \(f : X \to \mathbb{C} \) is bounded if there is a constant \(M > 0 \) with \(|f(x)| \leq M \) for all \(x \) in \(X \). Show that if \(f \) and \(g \) are bounded uniformly continuous (Lipschitz) functions from \(X \) into \(\mathbb{C} \) then so is \(fg \).

Proof. Let \(d \) denote the metric on \(X \). Since \(f \) and \(g \) are bounded, there exists \(M > 0 \) such that \(|f(x)| \leq M \) and \(|g(x)| \leq M \) for all \(x \) in \(X \). So, \(|(fg)(x)| \leq M^2 \) for all \(x \) in \(X \) and hence \(fg \) is bounded. Now, let \(\epsilon > 0 \). By the uniform continuity of \(f \) and \(g \), there exists \(\delta > 0 \) such that \(|f(x) - f(y)| < \epsilon/2M \) and \(|g(x) - g(y)| < \epsilon/2M \) for all \(x, y \) in \(X \) such that \(d(x, y) < \delta \).

Then, for any \(x, y \) in \(X \) such that \(d(x, y) < \delta \), we have

\[
|f(x)g(x) - f(y)g(y)| = |f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)|
\]

\[
\leq |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)| \leq M \frac{\epsilon}{2M} + M \frac{\epsilon}{2M} = \epsilon
\]

This proves the uniform continuity of \(fg \).

Now, let \(f \) and \(g \) be bounded (with bound \(M \)) Lipschitz functions with constant \(M' \). Then \(|f(x) - f(y)| \leq M'd(x, y) \) and \(|g(x) - g(y)| \leq M'd(x, y) \) for all \(x, y \) in \(X \). Then, as above,

\[
|f(x)g(x) - f(y)g(y)| \leq |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)|
\]

\[
\leq MM'd(x, y) + MM'd(x, y) = 2MM'd(x, y)
\]

So, \(fg \) is Lipschitz with constant \(2MM' \).

\[\square \]

Problem 2. Suppose \(f : X \to \Omega \) is uniformly continuous; show that if \(\{x_n\} \) is a Cauchy sequence in \(X \) then \(\{f(x_n)\} \) is a Cauchy sequence in \(\Omega \). Is this still true if we only assume that \(f \) is continuous?

Proof. Let \(d \) denote the metric on \(X \) and let \(\rho \) denote the metric on \(\Omega \). Let \(\epsilon > 0 \). Then, by the uniform continuity of \(f \), there exists \(\delta > 0 \) such that \(\rho(f(x), f(y)) < \epsilon \) whenever \(d(x, y) < \delta \). By the Cauchy-ness of \(\{x_n\} \), there exists \(N \in \mathbb{N} \) such that \(d(x_n, x_m) < \delta \) for all \(n, m \geq N \). This implies that \(\rho(f(x_n), f(x_m)) < \epsilon \) for all \(n, m \geq N \). As \(\epsilon > 0 \) was arbitrary, we conclude that \(\{f(x_n)\} \) is Cauchy in \(\Omega \).

This is not true if \(f \) is just assumed to be continuous. For example, take \(f : (0, 1) \to (1, \infty) \) given by \(f(x) = 1/x \). Then the sequence \(\{1/n\} \) is Cauchy in \((0, 1) \) but \(\{f(1/n)\} \) is not Cauchy in \((1, \infty) \).

\[\square \]
Problem 3. Suppose that Ω is a complete metric space and that $f : (D, d) \to (\Omega, \rho)$ is uniformly continuous, where D is dense in (X, d). Use Problem 2 to show that there is a uniformly continuous function $g : X \to \Omega$ with $g(x) = f(x)$ for every x in D.

Proof. Let x in X. We can then choose a sequence $\{x_n\}$ in D that converges to x in X. Since $\{x_n\}$ is a Cauchy sequence (because it is convergent), by Problem 2, we know that $\{f(x_n)\}$ is a Cauchy sequence in Ω. Since Ω is complete, it converges in Ω to a limit, which we shall denote by $g(x)$. Now, let $\{y_n\}$ be another sequence in D converging to x in X. Then it is easy to see that the sequence $x_1, y_1, x_2, y_2, \ldots$ is a Cauchy sequence in D converging to x in X. So, the sequence $f(x_1), f(y_1), f(x_2), f(y_2), \ldots$ in Ω is Cauchy and has a convergent subsequence $\{f(x_n)\}$ converging to $g(x)$. This implies that the subsequence $\{f(y_n)\}$ also converges to $g(x)$. So, $g(x)$ is an element of Ω that is dependent only on x and not on the choice of sequence in D. So the function $g : X \to \Omega$ is well-defined. Clearly, if $x \in D$, choosing the sequence $\{x_n = x\}$ in D implies that $g(x) = f(x)$. Now, let $\epsilon > 0$. Since f is uniformly continuous, there exists $\delta > 0$ such that $\rho(f(x), f(y)) < \epsilon$ whenever x, y in D with $d(x, y) < \delta$. Let x, y in X be such that $d(x, y) = \delta - r$ with $0 < r \leq \delta$. Choose 2 sequences $\{x_n\}$ and $\{y_n\}$ in D converging to x and y, respectively. Choose N large enough such that $d(x_N, x) < r/2, d(y_N, y) < r/2, \rho(f(x_N), g(x)) < \epsilon$ and $\rho(f(y_N), g(y)) < \epsilon$. Then

$$d(x_N, y_N) \leq d(x_N, x) + d(x, y) + d(y, y_N) < r/2 + \delta - r + r/2 = \delta.$$

This implies that $\rho(f(x_N, y_N)) < \epsilon/3$. So,

$$\rho(g(x), g(y)) \leq \rho(g(x), f(x_N)) + \rho(f(x_N), f(y_N)) + \rho(f(y_N), g(y)) < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.$$

This shows that g is uniformly continuous.

Problem 4. Let $\{f_n\}$ be a sequence of uniformly continuous functions from (X, d) into (Ω, p) and suppose that $f = u\lim f_n$ exists. Prove that f is uniformly continuous. If each f_n is a Lipschitz function with constant M_n and $\sup M_n < \infty$, show that f is a Lipschitz function. If $\sup M_n = \infty$, show that f may fail to be Lipschitz.

Proof. Let $\epsilon > 0$. Fix N large enough such that $p(f_N(x), f(x)) < \epsilon/3$ for all x in X. Since f_N is uniformly continuous, there exists $\delta > 0$ such that $p(f_N(x), f_N(y)) < \epsilon/3$ for all x, y in X with $d(x, y) < \delta$. Then, for all x, y in X with $d(x, y) < \delta$, we have

$$p(f(x), f(y)) \leq p(f(x), f_N(x)) + p(f_N(x), f_N(y)) + p(f_N(y), f(y)) < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.$$

So f is uniformly continuous.

Now suppose the f_n’s are Lipschitz functions with constant M_n. So $p(f_n(x), f_n(y)) \leq M_n d(x, y)$ for all x, y in X. Let $M = \sup M_n$. Pick N large enough such that $p(f(x), f_N(x)) < \epsilon/2$ for all x in X. Then, we have

$$p(f(x), f(y)) \leq p(f(x), f_N(x)) + p(f_N(x), f_N(y)) + p(f_N(y), f(y)) < \epsilon/2 + M_N d(x, y) + \epsilon/2 \leq \epsilon + M d(x, y).$$
So we have that \(p(f(x), f(y)) - Md(x, y) < \epsilon \) for all \(x, y \) in \(X \). As \(\epsilon > 0 \) was arbitrary, we have \(p(f(x), f(y)) \leq Md(x, y) \). Thus, \(f \) is a Lipschitz function.

Now, we use the fact that every 2\(\pi \)-periodic continuous function on \([-\pi, \pi]\) can be approximated uniformly by trigonometric polynomials, i.e. \(f: [-\pi, \pi] \to \mathbb{C} \) is a continuous function with \(f(-\pi) = f(\pi) \), then there exists a sequence \(\{f_n\} \) of trigonometric polynomials that converge uniformly to \(f \). If we prove that every trigonometric polynomial is Lipschitz, then taking any continuous 2\(\pi \)-periodic function \(f: [-\pi, \pi] \to \mathbb{C} \) that is not Lipschitz gives us a counterexample. For \(k \in \mathbb{Z} \), let \(g_k : [-\pi, \pi] \to \mathbb{C} \) be given by \(g_k(x) = e^{ikx} \). Then, for \(x \neq y \),

\[
\frac{|g_k(x) - g_k(y)|}{|x - y|} = \frac{|e^{ikx} - e^{iky}|}{|x - y|} = 2\left|\sin \frac{x}{2}(x - y)\right| \leq k
\]

So \(g_k \) is Lipschitz with constant \(k \). Since a finite linear combination of Lipschitz functions is Lipschitz, any trigonometric function is Lipschitz. As an example, we take \(f(x) = |x| \ln(|x|) \). If \(f \) is Lipschitz, there exists \(M > 0 \) such that \(\frac{|f(x) - f(0)|}{|x - 0|} < M \) for all \(x \in [-\pi, \pi], x \neq 0 \). But \(\frac{|f(x) - f(0)|}{|x - 0|} = |\ln |x|| \) which is unbounded near 0. So \(f \) is not Lipschitz. Note that by observing that polynomials on a bounded interval are Lipschitz, we could also apply Weierstrass approximation theorem to obtain counterexamples.

\[\square \]

Problem 5. Show that the radius of convergence of the power series

\[
\sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}
\]

is 1, and discuss convergence for \(z = 1, -1, \) and \(i \).

Proof. For this power series, \(a_n = \frac{(-1)^m}{m} \) if \(n = m(m + 1) \) for some \(m \in \mathbb{N} \) and 0 otherwise.

\[
\limsup |a_n|^{1/n} = \limsup \left| \frac{(-1)^n}{n} \right|^{1/(n+1)} = \limsup \frac{1}{n^{1/(n+1)}} = \lim \frac{1}{n^{1/(n+1)}}
\]

\[
= \frac{1}{\lim n^{1/(n+1)}} = \frac{1}{\lim \frac{\ln n}{n(1+1)}} = \frac{1}{e^0} = 1.
\]

So \(1/R = 1 \), hence \(R = 1 \).

Since \(n(n+1) \) is even for all \(n \geq 1 \), for \(z = 1, -1 \), the series equals \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \ln 2 \). Let \(z = i \). Then the series becomes

\[
\sum_{n=1}^{\infty} \frac{(-1)^n}{n} i^{n(n+1)} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} (-1)^{n(n+1)/2} = \sum_{n=1}^{\infty} \frac{(-1)^{n(n+3)/2}}{n} = 1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \cdots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n(2n-1)}
\]

By the alternating series test, this converges. \[\square \]