Problem 1. Let $G = \mathbb{C} \setminus \{0\}$ and show that every closed curve in G is homotopic to a closed curve whose trace is contained in $\{z : |z| = 1\}$.

Proof. Let $\gamma : [0, 1] \to G$ be a closed curve in G. Let $\gamma' : [0, 1] \to \{z : |z| = 1\}$ be the curve given by

$$\gamma'(s) = \frac{\gamma(s)}{|\gamma(s)|}.$$

This is well-defined because $\gamma(s) \neq 0$ for all $s \in [0, 1]$. We will show that γ and γ' are homotopic. Define $\Gamma : [0, 1] \times [0, 1] \to G$ by

$$\Gamma(s, t) = (1 - t)\gamma(s) + t\gamma'(s)$$

Note that $\Gamma(s, t) \neq 0$ for all s, t and so it is well-defined. It is clearly continuous and

$$\Gamma(s, 0) = \gamma(s), \quad \Gamma(s, 1) = \gamma'(s)$$

$$\Gamma(0, t) = \Gamma(1, t) \quad (0 \leq t \leq 1).$$

So γ is homotopic to γ' in G.

Problem 2. Let $G = \mathbb{C} \setminus \{a, b\}, a \neq b$, and let γ be the curve in the book. Show that $n(\gamma; a) = n(\gamma; b) = 0$.

Proof. This solution is not rigorous. We see that there are two closed curves going around a with one going in the clockwise direction and the other in the anti-clockwise direction. This means that the index contributed by one of them is 1 and the other one is -1. Adding up, we see that $n(\gamma; a) = 0$. The same argument holds for b.

Problem 3. Let G be a region and let γ_0 and γ_1 be two closed smooth curves in G. Suppose $\gamma_0 \sim \gamma_1$ and Γ satisfies (6.2). Also suppose that $\gamma_t(s) = \Gamma(s, t)$ is smooth for each t. If $w \in \mathbb{C} \setminus G$ define $h(t) = n(\gamma_t; w)$ and show that $h : [0, 1] \to \mathbb{Z}$ is continuous.

Proof. Since $[0, 1]$ is connected, this is equivalent to showing that h is constant. We know that, by Cauchy’s theorem, if γ and γ' are two homotopic closed rectifiable curves in G, then $n(\gamma; w) = n(\gamma'; w)$ for all $w \in \mathbb{C} \setminus G$. We will prove that for all $t \in [0, 1], \gamma_0$ is homotopic to γ_t. This shows that $h(t) = 0$ for all $t \in [0, 1]$, and hence h is constant. Fix $0 \leq t_0 \leq 1$. Let $\Gamma' : [0, 1] \times [0, 1] \to G$ by

$$\Gamma'(s, t) = \Gamma(s, t_0 t)$$

Then Γ' is a homotopy from γ_0 to γ_{t_0}. This concludes our proof.
Problem 4. Let \(G \) be open and suppose that \(\gamma \) is a closed rectifiable curve in \(G \) such that \(\gamma \approx 0 \). Set \(r = d(\{ \gamma \}, \partial G) \) and \(H = \{ z \in \mathbb{C} : n(\gamma; z) = 0 \} \).

(a) Show that \(\{ z : d(z, \partial G) < \frac{1}{2}r \} \subset H \).

(b) Use part (a) to show that if \(f : G \to \mathbb{C} \) is analytic then \(f(z) = \alpha \) has at most a finite number of solutions \(z \) such that \(n(\gamma; z) \neq 0 \).

Proof. (a) Let \(z \) be such that \(d(z, \partial G) < \frac{1}{2}r \). Then there exists \(x \in \partial G \) such that \(d(z, x) < \frac{1}{2}r \). Then \(B(x; \frac{1}{2}r) \) is a connected subset of \(\mathbb{C} \setminus \{ \gamma \} \). Then \(n(\gamma; \cdot) \) is constant on \(B(x; \frac{1}{2}r) \). But \(B(x; \frac{1}{2}r) \cap (\mathbb{C} \setminus G) \neq \emptyset \). Since \(\gamma \approx 0 \), this shows that \(n(\gamma; z) = 0 \). As \(z \) is arbitrary, this completes the proof.

(b) WLOG, assume that \(\alpha = 0 \). Assume that \(f \) is not the constant function. Let \(Z = \{ z \in G : f(z) = 0 \} \). Then \(Z \) has no limit points in \(G \), by Theorem 3.7. This implies that any limit point lies in \(\partial G \). Now we know that the set \(\{ z \in \mathbb{C} : n(\gamma; z) \neq 0 \} \) is bounded. Suppose there exists infinitely many \(z \in G \) such that \(f(z) = 0 \) and \(n(\gamma; z) \neq 0 \), and denote the set of all such \(z \) by \(V \). The set \(\{ z \in \mathbb{C} : n(\gamma; z) \neq 0 \} \) is bounded. So \(V \) is bounded, hence \(\overline{V} \) is compact. So there exists a sequence \(\{ x_n \} \) in \(V \) that converges to \(x \) in \(\overline{V} \). But we know that \(Z \) and hence \(V \) has no limit points in \(G \). So \(x \in \partial G \). Then, by continuity, \(n(\gamma; x) \neq 0 \), which contradicts (a).

Problem 5. Let \(f \) be analytic in \(B(a; R) \) and suppose that \(f(a) = 0 \). Show that \(a \) is a zero of multiplicity \(m \) iff \(f^{(m-1)}(a) = \ldots = f(a) = 0 \) and \(f^{(m)}(a) \neq 0 \).

Proof. Suppose that \(a \) is a zero of multiplicity \(m \). Then there exists an analytic function \(g : B(a; R) \to \mathbb{C} \) such that \(f(z) = (z - a)^m g(z) \) where \(g(a) \neq 0 \). Then, \(h(z) = (z - a)^{m-1} g(z) \) has a zero of multiplicity \(m - 1 \) at \(a \). Inductively, we assume that \(h^{(m-2)}(a) = \ldots = h(a) = 0 \) and \(h^{(m-1)}(a) \neq 0 \). \(f(z) = (z - a) h(z) \). So \(f^{(i)}(z) = (z - a) h^{(i)}(z) + \sum_{j=0}^{i-1} h^{(j)}(z) \). Then we see that \(f^{(m-1)}(a) = \ldots = f(a) = 0 \) and \(f^{(m)}(a) \neq 0 \).

Conversely, suppose \(f^{(m-1)}(a) = \ldots = f(a) = 0 \) and \(f^{(m)}(a) \neq 0 \). Let \(a \) be a zero of multiplicity \(k \). Then \(f^{(k)}(a) \neq 0 \), hence \(k \geq m \), but \(f^{(i)}(a) = 0 \) for \(i < k \) by the above paragraph. This implies that \(k \leq m \). So \(k = m \).

Problem 6. Suppose that \(f : G \to \mathbb{C} \) is analytic and one-one; show that \(f'(z) \neq 0 \) for any \(z \) in \(G \).

Proof. Suppose \(f'(a) = 0 \) for some \(a \in G \). Let \(g : G \to \mathbb{C} \) be defined as \(g(z) = f(z) - f(a) \). Then \(g(a) = g'(a) = 0 \). So \(g \) has a zero at \(a \) of multiplicity at least 2, say, \(m \). Then, by Theorem 7.4, there exists \(\epsilon > 0 \) and \(\delta > 0 \) such that for \(0 < |\zeta| < \delta \), the equation \(g(z) = \zeta \) has exactly \(m \) simple roots in \(B(a; \epsilon) \). This contradicts the fact that \(g \) is one-one.