Recall: FEP-homotopy, γ_{FEP}.

- Independence of Path Thm from Lecture 23 notes.
- Counting zeros from Lecture 23 notes.

Open Mapping Thm. Let $G \subseteq \mathbb{C}$ be a region, and f analytic and nonconstant in G. Then, $f(U)$ is open for every open $U \subseteq G$.

Pf: Pick $a \in f(U)$, and $a \in U \Rightarrow f(a) = a$. Since f nonconstant, $f(z) - a$ has a zero of finite multiplicity at a. By previous Thm, if $B(a, \delta) \subseteq U$ and $B(a, \epsilon) \cap f(U) = \emptyset$ has m simple roots in $B(a, \delta)$ for each $\epsilon < \delta$.

In particular, $B(a, \delta) \subseteq f(U) \Rightarrow f(U)$ open. \[\Box \]

Corollary 1. If f is analytic and 1:1 in G, then $\Omega = f(G)$ is open and $f^{-1}: \Omega \to G$ analytic.

Pf: Previous Prop \Rightarrow if f^{-1} is cont. and $f \neq 0$ in G, then f^{-1} is analytic. w/ $(f^{-1})'(z) = \frac{1}{f'(f^{-1}(z))}$.

Well, OM Thm $\Rightarrow f^{-1}$ is cont. Moreover, previous Thm shows that if $f(a) = 0$, then $f \neq 0$ at least, 2:1 near a. Since f is globally 1:1 in G, by assumption, we conclude $f \neq 0$ in G. Thus, f^{-1} is analytic, and $(f^{-1})'(z) = \frac{1}{f'(f^{-1}(z))}$.