Recall. • **Argument principle.** Assume \(f \) is 0 and \(f \) anal. in \(G \). If \(f(z) = 0 \) has roots \(a_1, \ldots, a_n \) in \(G \), then

\[
\frac{1}{2\pi i} \oint_{\partial D} \frac{f'(z)}{f(z)-0} \, dz = \sum_{k=1}^{n} \frac{1}{\rho(a_k)}.
\]

Typical application: \(f \) is simple w/ \(G \backslash \{a\} = \{v(z) = 0 \cup u(z) = 1 \} \).

Then, \(\frac{1}{2\pi i} \oint_{\partial D} \frac{f'(z)}{f(z)-0} \, dz \neq \emptyset \{ \text{roots w/ multi in } G \} \).

• **Local behavior of** \(w = f(z) \). Suppose \(f(z) = 0 \) has root of mult. \(m \equiv 1 \) at \(a \in G \). Then, \(\exists \delta > 0 \) s.t. \(f(z) = 0 \) has \(m \) simple (mult = 1) roots in \(\mathbb{B}(a, \delta) \) for each \(a \in \mathbb{B}(a, \epsilon) \).

In particular, \(\mathbb{B}(a, \epsilon) \subseteq f(\mathbb{B}(a, \delta)) \). Thus, if \(G \) is a region, \(f \) nonconstant

\(\Rightarrow \) for every \(a \in \mathbb{B}(a) \) and \(a \notin f^{-1}(\{0\}) \), \(f(z) = 0 \) has root of finite mult at \(z = a \).

\(\Rightarrow \exists \mathbb{B}(a, \epsilon) \subseteq f(G) \Rightarrow f(G) \) open.

• Do Open Mapping Theorem + Cor 1 from Lecture 24 notes.

Goursat’s Thm. Let \(G \subseteq \mathbb{C} \) and assume \(f \) is \(C \)-diff. at every \(a \in G \).

Then \(f \) is anal. in \(G \).

Pf. Use Morera’s Thm. Pick \(B(a, \epsilon) \subseteq G \), and triangular path \(T \subseteq B(a, \epsilon) \).

\(\Rightarrow \exists \Delta \), \(\Delta \) closed triangle.
We have \(\sum_{k=1}^{4} \frac{1}{T_k} \int \frac{f}{T_k} \, dz \) by cancellation over interior segments. Pick \(T^{(n)} \) to be \(T_k \) s.t. \(\frac{1}{4} \int \frac{f}{T_k} \, dz \leq \max_k \frac{1}{T_k} \int \frac{f}{T_k} \, dz \).

\[\frac{|Sf|}{T} \leq 4 \frac{|Sf|}{T^{(n)}}. \quad \text{Note: } l(T^{(n)}) = \frac{1}{2} l(T), \quad \text{diam}(\Delta^{(n)}) = \frac{1}{2} \text{diam}(\Delta). \]

Repeate. Inductively, we obtain \(\Delta^{(0)} = \Delta \supseteq \Delta^{(1)} \supseteq \Delta^{(2)} \supseteq \ldots \). closed triangles. We have \(l(T^{(n)}) = 2^{-n} l(T) \), \(\text{diam}(\Delta^{(n)}) = 2^{-n} \text{diam}(\Delta). \) By Cantor's Paradox, \(\bigcap_{n=0}^{\infty} \Delta^{(n)} = \{ z \in \mathbb{R} \}. \)

Since \(f \) has C-der. \(f'(z) \), \(\forall z \in \mathbb{R} \), s.t.

\[|f(z) - f(z_0) - f'(z_0)(z-z_0)| < \varepsilon |z-z_0|, \quad |z-z_0| < \delta. \]

Now, \(h(z) = f(z) + f'(z_0)(z-z_0) \) is anal. (linear in \(z \)) \Rightarrow

\[\sum_{k=1}^{4} \frac{1}{T_k} \int \frac{f}{T_k} \, dz = 4 \int \frac{1}{T} \left[f(z) - f(z_0) - f'(z_0)(z-z_0) \right] \, dz \Rightarrow \]

\[\left| \frac{1}{T} \int f \, dz \right| \leq 4 \int \frac{1}{T} \left| f(z) - f(z_0) - f'(z_0)(z-z_0) \right| \, dz \leq \varepsilon \text{ diam}(\Delta) \leq 2^{-n} \text{ diam}(\Delta^{(n)}) \leq 2^{-n} \text{ diam}(\Delta) \leq \varepsilon \text{ diam}(\Delta) l(T). \]

Since \(\varepsilon \) arbitrary \(\Rightarrow \) \(\sum_{k=1}^{4} \frac{1}{T_k} \int \frac{f}{T_k} \, dz = 0 \Rightarrow f \) anal. by Morera. \(\square \)