Recall: \(f : (x, y) \rightarrow (\Omega, \rho) \) is cont. if \(\forall a, \varepsilon > 0 \exists \delta > 0 \text{ s.t. } \rho(f(a), f(a)) < \varepsilon \)
when \(d(x, a) < \delta \).

- Equivalently, \(\forall \Delta \subseteq \Omega \text{ open } \Rightarrow f^{-1}(\Delta) \subseteq \Omega \text{ is open.} \)

Basic Props.
1. If \(f, g : X \rightarrow \Omega \) are cont. \(\Rightarrow \) \(f\cdot g \), \(f\cdot g \) are cont.
2. \(f : X \rightarrow \Omega \), \(g : \overline{X} \rightarrow \Omega \) are cont. \(\Rightarrow \) \(g \circ f : X \rightarrow \Omega \) is cont.

Pf left as Ex. (for 2, use 2nd char. of continuity.)

Def 1. \(f : X \rightarrow \Omega \) is uniformly continuous if \(\forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } \rho(f(x), f(y)) < \varepsilon \text{ when } d(x, y) < \delta. \)

2. \(f \) is Lipshitz cont. if \(\exists C > 0 \text{ s.t. } \rho(f(x), f(y)) \leq C \cdot d(x, y). \)

Clearly: \(f \) Lipshitz \(\Rightarrow \) uniform cont. \(\Rightarrow f \) cont.

Important Ex. Let \(A \subseteq \Omega \), and define \(d(\cdot, A) : X \rightarrow \mathbb{R}_+ \) by

\[
d(x, A) := \inf_{y \in A} d(x, y).
\]

Then, \(d(\cdot, A) \) is Lipshitz w/ \(C = 1. \)

Pf. Pick \(\varepsilon > 0 \), \(\exists a \in A \text{ s.t. } d(x, a) < d(x, A) + \varepsilon \)

\[
d(y, A) - d(x, A) = d(y, a) - (d(x, a) - \varepsilon) \leq d(y, x) + d(x, a) - d(x, a) + \varepsilon = d(y, x) + \varepsilon.
\]

\(\Rightarrow \) \(d(y, A) - d(x, A) \leq d(x, y) \) since \(\varepsilon \text{ arbitrary.} \)

Thus, \(d(\cdot, A) \) is Lipshitz cont.

(i) If \(K \subseteq \Omega \text{ is compact } \Rightarrow f(K) \subseteq \Omega \text{ is compact.} \)

(ii) If \(A \subseteq \Omega \text{ is connected } \Rightarrow f(A) \subseteq \Omega \text{ is connected.} \)

Pf.

(i) Let \(\left\{ \Delta_k \right\}_{k \in I} \) be an open cover of \(f(K) \). Then \(f^{-1}(\Delta_k)_{k \in I} \) is an open cover of \(K \). By assumption, \(\exists \text{ finite subcover } K \subseteq \bigcup_{k=1}^{n} f^{-1}(\Delta_k) \).

But then \(f(K) \subseteq \bigcup_{k=1}^{n} \Delta_k \) finite subcover \(\Rightarrow f(K) \) compact.
But then \(f(K) \leq \bigcup_{k=1}^{\infty} \Delta_{x_k} \), finite subcover \(\Rightarrow f(K) \) compact.

(ii) Suppose \(f(A) \) not connected. \(\Rightarrow \exists B \subseteq \mathbb{R} \) open + closed s.t. \(B \cap f(A) \neq \emptyset \), \(f(A) \). But then \(f^{-1}(B) \subseteq \mathbb{R} \) is open + closed by cont. \(\{ f^{-1}(B) \cap A \neq \emptyset \text{ and } f^{-1}(B) \cap A \neq A \} \).

This is \(\emptyset \) since \(A \) is connected. \(\Box \)

Important consequence:

Theorem 2 Iff \(f: \mathbb{R} \rightarrow \mathbb{R} \) is cont., \(K \subseteq \mathbb{R} \) compact, then

\[\exists x_1, x_2 \in K \text{ s.t.} \]

\[\sup_{x \in K} f(x) = f(x_1) \quad \text{and} \quad \inf_{x \in K} f(x) = f(x_2) \]

Proof: By Thm 1, \(f(K) \subseteq \mathbb{R} \) is compact. By Heine-Borel, \(f(K) \) is closed and bounded. \(\Rightarrow Y_1 = \inf_{y \in f(K)} y \), \(Y_2 = \sup_{y \in f(K)} y \)

belong to \(f(K) \) \(\Rightarrow \exists x_1, x_2 \in K \text{ s.t.} f(x_1) = Y_1 \), \(f(x_2) = Y_2 \). \(\Box \)

Very important result:

Theorem 3. Iff \(f: \mathbb{R} \rightarrow \mathbb{R} \) cont. and \(X \) compact \(\Rightarrow f \) is unif. cont.

Proof: Pick \(\varepsilon > 0 \). For every \(a \in X \exists \delta_a > 0 \text{ s.t.} |f(x) - f(a)| < \frac{\varepsilon}{2} \)

when \(d(x, a) < \delta_a \). Consider \(G_a = B(a, \delta_a) \) open. If

\[x, y \in G_a \Rightarrow \rho(f(x), f(y)) \leq \rho(f(x), f(a)) + \rho(f(a), f(y)) < \varepsilon/2 + \varepsilon/2 = \varepsilon. \]

Now \(\{G_a\}_{a \in X} \) is an open cover of \(X \). Since \(X \) compact \(\Rightarrow \) seq. compact, by Lebesgue’s Covering Lemma \(\exists \delta > 0 \)

\[\forall b \in X \exists a \in X \text{ s.t.} B(b, \delta) \subseteq G_a = B(a, \delta_a) \text{ for some } a. \text{ But then} \]

\[d(x, b) < \delta \Rightarrow x, b \in G_a \Rightarrow \rho(f(x), f(b)) < \varepsilon. \Rightarrow \]
\[\text{If } d(x, b) < \varepsilon \Rightarrow x, b \in G_a \Rightarrow C(f(x), f(b)) < \varepsilon. \Rightarrow \]

\text{Thm 4. If } F \subseteq X \text{ closed, } K \subseteq X \text{ compact, } F \cap K = \emptyset \Rightarrow d(F, K) = \inf_{x \in F} d(x, y) > 0. \]

\text{Pr. Observe } d(F, K) = \inf_{x \in F} d(x, F). \text{ Now, } f : X \to \Omega \text{ given by } f(x) = d(x, F) \text{ is cont. (Lipschitz). Since } K \text{ compact, Thm 2 } \Rightarrow \exists x_0 \in K \text{ s.t. } f(x_0) = d(x_0, F) = \inf_{x \in F} d(x, F) = d(F, K). \]

But it is easy to see that \(d(x_0, F) = 0 \Leftrightarrow x_0 \) \text{ a limit point of } F. \text{ Since } F \text{ is closed, if } x_0 \text{ were limit pt of } F \text{ then } x_0 \in F. \text{ But } F \cap K = \emptyset \Rightarrow d(x_0, F) > 0. \]