Chapter 3: Elementary properties and examples of analytic functions

§ 1 Power Series.

Def. If \(a_n \) is in \(\mathbb{C} \) for every \(n \geq 0 \), then the series converges to \(z \in \mathbb{C} \)

\[\iff \quad \forall \varepsilon > 0, \quad \exists N \in \mathbb{N} \text{ s.t. } \left| \sum_{n=0}^{m} a_n - z \right| < \varepsilon \quad \text{whenever} \quad m > N. \]

Accordingly, we denote \(z = \sum_{n=0}^{\infty} a_n = \lim_{m \to \infty} S_m \).

The series converges absolutely if \(\sum |a_n| \) converges.

Prop 11. If \(\sum |a_n| \) converges absolutely, then \(\sum a_n \) converges.

Pf. Let \(\varepsilon > 0 \) and set \(z = a_0 + a_1 + \cdots + a_n \).

Since \(\sum |a_n| \) converges,

\[\exists N \in \mathbb{N} \text{ s.t. } \left| \sum_{n=0}^{m} |a_n| - \sum_{n=0}^{m} |a_n| \right| < \varepsilon \]

\[= \frac{\varepsilon}{n+1} |a_n|. \]

Thus, whenever \(m > N \),

\[|z_m - z_n| = \left| \sum_{n=0}^{m} a_n - \sum_{n=0}^{m} a_n \right| \leq \sum_{n=N+1}^{m} |a_n| \leq \frac{\varepsilon}{n+1} |a_n| < \varepsilon. \]

That is, \(\{z_n\} \) is a Cauchy sequence and so,

\[\exists z \in \mathbb{C} \text{ s.t. } z = \lim z_n. \]

\[\text{Hence, } z = \sum_{n=0}^{\infty} a_n. \]

Def. Let \(\{a_n\} \) be a sequence in \(\mathbb{R} \).

Define \(\lim \inf a_n = \lim \inf \{a_n, a_{n+1}, \ldots\} \)

\[\limsup a_n = \limsup \{a_n, a_{n+1}, \ldots\} \]

Sometimes we also write

\[\lim \inf a_n = \inf_{n \to \infty} a_n \]

\[\lim \sup a_n = \sup_{n \to \infty} a_n \]
Prop. If \(\{a_n\} \) is a convergent sequence in \(\mathbb{R} \) and \(a = \lim a_n \),
then \(a = \liminf a_n = \limsup a_n \).

Prop. \(\liminf a_n \leq \limsup a_n \) for any sequence in \(\mathbb{R} \).

A power series about \(a \) is an infinite series of the form \(\sum_{n=0}^{\infty} a_n (z-a)^n \).

Ex. If \(|z| < 1 \), then
\[
\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}.
\]
\[
\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \cdots + z^n = \frac{1 - z^{n+1}}{1-z} \quad \rightarrow \quad \frac{1}{1-z}
\]
\(|z| < 1 \Rightarrow |z|^{n+1} \rightarrow 0 \)

Thm. 1.3. For a given power series \(\sum_{n=0}^{\infty} a_n (z-a)^n \),
define the number \(R \), \(0 \leq R < \infty \), by
\[
\frac{1}{R} = \limsup |a_n|^{\frac{1}{n}}
\]
then (a) if \(|z-a| < R \),
then the series converges absolutely.
(b) if \(|z-a| > R \),
then the terms of the series become unbounded
and so the series diverges.
(c) if \(0 < R < \infty \),
then the series converges uniformly on \(\{ z : |z-a| \leq R \} \).

Moreover, the number \(R \) is the only number
having property (a) and (b).
pf. We may suppose $a = 0$.

(a) If $|z| < R$, there is an r with $|z| < r < R$.

Thus, $\exists N \in \mathbb{N}$, s.t. $|a_n| < \frac{1}{n^k}$ for all $n \geq N$. $\frac{1}{n^k} > \frac{1}{r^k}$

Then $|a_n| < (\frac{1}{r})^k$ and $|a_n z^n| < (\frac{|z|}{r})^k$.

Thus $\sum_{n=N}^{\infty} a_n z^n$ is dominated by $\frac{|z|^k}{r^k} (\frac{1}{r})^k$

\[\frac{|z|^k}{r^k} < 1, \quad \frac{\infty}{n=0} (\frac{|z|^k}{r^k})^n\]

Thus, $\sum_{n=0}^{\infty} a_n z^n$ converges absolutely.

(b) Exercise

(c) Fix $r < |z|$, and choose $r < f < R$

$\exists N$, s.t. $|a_n| < \frac{1}{n^k}$ for $n \geq N$, as above.

If $|z| = r$, $|a_n z^n| < \frac{1}{n^k}$ for $n \geq N$.

$\sum_{n=0}^{\infty} a_n z^n$ is dominated by $\frac{\infty}{n=0} (\frac{1}{r})^n$

Hence $\sum_{n=0}^{\infty} a_n z^n$ converges uniformly on $|z|: |z| \leq r$.

Remark. R is called the radius of convergence of the power series.

Prop 1.4. If $\sum a_n (z-a)^n$ is a given power series with radius of convergence R, then

$R = \lim a_n$ if the limit exists.

Proof. We may assume $a = 0$.

Let $d = \lim a_n$.

Suppose $|z| < \alpha$. WTS $\sum |a_n z^n|$ converges.

Take r s.t. $|z| < r < \alpha$.

$\exists N > 0$, s.t. $|a_n| > r$ for $n > N$.

Let $B = |a_n| \cdot r^N$

Then

$|a_{N+1} \cdot r^{N+1}| \leq \frac{|a_n|}{r} \cdot r^{N+1} = |a_n| \cdot r^N = B$

$|a_{N+2} \cdot r^{N+2}| \leq \frac{|a_{N+1}|}{r} \cdot r^{N+2} = |a_{N+1}| \cdot r^{N+1} = B$

Inductively, $|a_n r^n| \leq B$ for $n > N$.

Since $|2| < r$, $|a_n z^n| = |a_n r^n| \cdot |\frac{z}{r}|^n \leq B \left(\frac{|z|}{r}\right)^n \to n \geq N$.

So $\sum |a_n z^n|$ converges.

Suppose $|2| > 2$.

Then $\sum a_n z^n$ diverges.

Take r s.t. $2 < r < |2|$.

Since $2 = \lim \frac{|a_n|}{|a_{N+1}|} \leq r$,

$2N > 0$ s.t. $\frac{|a_n|}{|a_{N+1}|} < r$ for $n > N$.

Set $B = \lim |a_n r^N| > 0$.

Then

$|a_{N+1} r^{N+1}| > \frac{|a_n|}{r} \cdot r^{N+1} = |a_n| \cdot r^N = B$

$|a_{N+2} r^{N+2}| > \frac{|a_{N+1}|}{r} \cdot r^{N+2} = |a_{N+1}| \cdot r^{N+1} = B$.

Inductively, $|a_n r^n| > B$ for any $n > N$.

$|a_n z^n| > |a_n r^n| > B \to 0$ as $n \to \infty$.

So $\sum a_n z^n$ diverges.

Therefore $R = 2$.

Ex. Consider $\frac{\infty}{n^2, \frac{n^2}{n^2}}$

Note $a_n = \frac{1}{n!}$, $\frac{a_n}{a_{N+1}} = n+1 \to +\infty$.

So $R = +\infty$

$e^z \overset{\text{def}}{=} \lim_{n \to \infty} \frac{z^n}{n!}$
Prop. 1.5. Let \(\sum a_n \) and \(\sum b_n \) be two absolutely convergent series and put
\[
C_n = \frac{2}{n} \cdot a_n \cdot b_n
\]

Then \(\sum C_n \) is absolutely convergent with the sum
\[
\sum C_n = \sum a_n \cdot \sum b_n
\]

Prop. 1.6. Let \(\sum a_n (z-a)^n \) and \(\sum b_n (z-a)^n \) be power series with

radius of convergence \(r > 0 \).

Put \(C_n = \frac{n}{n+1} \cdot a_n \cdot b_n \).

Then both power series \(\sum (a_n + b_n) (z-a)^n \) and \(\sum C_n (z-a)^n \)

have radius of convergence \(r > 0 \), and
\[
\sum (a_n + b_n) (z-a)^n = \sum a_n (z-a)^n + \sum b_n (z-a)^n
\]
\[
\sum C_n (z-a)^n = \sum a_n (z-a)^n \cdot \sum b_n (z-a)^n
\]

for \(|z-a| < r \)

5.2. Analytic functions.

Def. 2.1. If \(G \) is an open set in \(\mathbb{C} \) and \(f : G \to \mathbb{C} \),

then \(f \) is differentiable at a point \(a \in G \) if
\[
 f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \quad \text{exists} \quad \text{in} \, \mathbb{C}
\]

\(f'(a) \) will be called the (complex) derivative of \(f \) at \(a \).

1. If \(f \) is differentiable at each point of \(G \), we say \(f \) is differentiable on \(G \).

\(f' : G \to \mathbb{C} \)

If \(f' \) is continuous, then we say \(f \) is continuously differentiable.

2. If \(f' \) is (complex) differentiable, we say \(f \) is twice differentiable.

Inductively, we can define \(f \) is infinitely differentiable.
Def 2.2. If \(f : \mathbb{C} \to \mathbb{C} \) is differentiable at \(a \in \mathbb{C} \), then \(f \) is continuous at \(a \).

Def 2.3. A function \(f : \mathbb{C} \to \mathbb{C} \) is analytic if \(f \) is continuously (complex) differentiable.

Chain Rule 2.4. Let \(f, g \) be analytic on \(G \) and \(N \) respectively. Suppose \(f(z) \equiv a \).

Then \(g \circ f \) is analytic in \(G \), and
\[
(g \circ f)'(z) = g'(f(z)) \cdot f'(z) \quad \text{for any } z \in G.
\]

Remark. We have defined analytic function \(f \) on open set \(G \).

For any arbitrary set \(A \), \(f \) is analytic on \(A \) if \(f \) is analytic in some open set \(G \) and \(A \subseteq G \).

Example. \(f : \mathbb{C} \to \mathbb{C} \), \(f(z) = \bar{z} \).

\[
\lim_{h \to 0} \frac{f(z + h) - f(z)}{h} = \lim_{h \to 0} \frac{\bar{h}}{h} = \lim_{h \to 0} \frac{1}{\bar{h}} \text{ if } h \in \mathbb{R}.
\]

\[
\frac{1}{\bar{h}} = \begin{cases}
1 & \text{if } h \in \mathbb{R} \\
-1 & \text{if } h \in \mathbb{H}
\end{cases}
\]

Thus, \(f \) is not (complex) differentiable.

\(f(x + iy) = x - iy \) is differentiable w.r.t. real variables \(x \) and \(y \).
Prop 2.5 Let \(f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \) have radius of convergence \(R > 0 \).

Then,

a) For each \(k \geq 1 \), the series
\[
\sum_{n=k}^{\infty} \frac{b_{n-k}}{(n-k)!} \frac{\partial^k f(z)}{\partial z^k} = \frac{b_{n-k}}{(n-k)!} \frac{\partial^k f(z)}{\partial z^k}
\]
has radius of convergence \(R \).

b) The function \(f \) is indefinitely differentiable in \(B(a, R) \) and furthermore, \(f^{(k)}(z) \) is given by (4) for any \(k \geq 1 \) and \(|z-a| < R \).

c) For \(n \geq 0 \), \(a_n = \frac{1}{n!} f^{(n)}(a) \).

proof. Again assume that \(a = 0 \).

(a) It suffices to prove for \(k = 1 \).

Recall \(R^1 = \limsup |a_n|^{\frac{1}{n}} \).

WTS: \(R^1 = \limsup |n a_n|^{\frac{1}{n}} \).

Sufficient to check \(\lim_{n \to \infty} \frac{n^{\frac{1}{n}}}{a_n} = 1 \)

\[
\lim_{n \to \infty} \frac{n^{\frac{1}{n}}}{a_n} = \lim_{n \to \infty} \frac{1}{n^{\frac{1}{n}}} = 0 \quad \text{as} \quad n \to \infty
\]

b) We first prove for \(k = 1 \).

For \(|z| < R \), put \(g(z) = \frac{1}{1!} \frac{\partial f(z)}{\partial z} \).

\[
S_n(z) = \sum_{j=0}^{n} a_j z^j, \quad R_n(z) = \sum_{j=n+1}^{\infty} a_j z^j
\]

Fix \(w \in B(0, R) \) and take \(r \) s.t. \(|w| < r < R \).

WTS: \(f'(w) = g(w) \).
Take $s > 0$ s.t. $\overline{B(w, s)} \subseteq B(0, r)$

Let $z \in B(w, s)$

\[
\frac{f(z) - f(w)}{z - w} = g(w)
\]

\[
= \left(\frac{s_n(z) - s_n(w)}{z - w} - s_n'(w) \right) + \left(s_n'(w) - g(w) \right) + \left(\frac{R_n(z) - R_n(w)}{z - w} \right)
\]

\[
\frac{R_n(z) - R_n(w)}{z - w} = \frac{\sum_{j=1}^{\infty} a_j (z^{j-1} w)}{z - w}
\]

\[
= \frac{\sum_{j=1}^{\infty} a_j (z^{j-1} + z^{j-2} w + \ldots + w^{j-1})}{z - w}
\]

\[
\left| \frac{R_n(z) - R_n(w)}{z - w} \right| \leq \frac{\sum_{j=1}^{\infty} |a_j| |z^{j-1} + z^{j-2} w + \ldots + w^{j-1}|}{|z - w|}
\]

\[
\leq \frac{\sum_{j=1}^{\infty} |a_j| (r^{j-1} + r^{j-2} + \ldots + r^{j-1})}{|r - 1|}
\]

\[
= \frac{\sum_{j=1}^{\infty} |a_j| \cdot r^{j-1}}{|r - 1|}.
\]

Since $R < R^*$, \(\sum_{j=1}^{\infty} |a_j| \cdot r^{j-1} < +\infty \)

Thus $\exists N_1 \in \mathbb{N}$ s.t. $\sum_{j=1}^{\infty} |a_j| \cdot r^{j-1} < \frac{\varepsilon}{3}$ for $n > N_1$.

\[
S_n(z) = \sum_{j=1}^{n} a_j \cdot w^{j-1} \rightarrow \sum_{j=1}^{\infty} i a_j \cdot w^{j-1} = g(w) \quad \text{as} \quad n \rightarrow \infty.
\]

$\exists N_2 \in \mathbb{N}$ s.t. $\left| s_n'(w) - g(w) \right| < \frac{\varepsilon}{3}$ for $n > N_2$.

\[
\exists N \in \mathbb{N} \quad \text{s.t.} \quad \left| s_n'(w) - g(w) \right| < \frac{\varepsilon}{3} \quad \text{for} \quad n > N.
\]
Take $n = \max (N_1, N_2)$. Then

$|S_n(w) - G(w)| < \varepsilon$

$\left| \frac{R_n(z) - R_n(w)}{z - w} \right| < \varepsilon$

$S_n(z) = \lim_{n \to w} \left(\frac{S_n(z) - S_n(w)}{z - w} - S_n'(w) \right) = 0$ for $n = \max (N_1, N_2)$,

$\exists \delta > 0$, s.t. $\left| \frac{S_n(z) - S_n(w)}{z - w} - S_n'(w) \right| < \varepsilon$ for $|z - w| < \delta$.

So $\left| \frac{f(z) - f(w)}{z - w} - g(w) \right| < \varepsilon$ for $|z - w| < \delta$.

That is

$f'(w) = \lim_{z \to w} \frac{f(z) - f(w)}{z - w} = g(w)$.

$c)

f^{(k)}(z) = \frac{n!}{n-k} \frac{n(n-1) \ldots (n-k+1)}{n!} a_{n-k} z^{n-k}.$ by (a)

$f^{(k)}(z) = k! a_k.$

Cor. 29 If the series $\sum_{n=0}^{\infty} a_n (z-a)^n$ has radius of convergence $R > 0$,

then $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ is analytic in $B(a, R)$.

Ex. $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ is analytic in \mathbb{C}.

$$(e^z)' = \sum_{n=1}^{\infty} \frac{n}{n!} z^{n-1} = \sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!} = e^z$$

$\quad e^{a+b} = e^a e^b$

$e^z e^{-z} = e^0 = 1$

$\overline{e^z} = e^{\overline{z}}$

$|e^z| = |e^z \overline{e^z}|^{1/2} = |e^{2i\pi /2}| = e^{\Re z}$
Def. For $z \in \mathbb{C}$, define
\[\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots + (-1)^n \frac{z^{2n}}{(2n)!} \]
\[\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots + (-1)^n \frac{z^{2n-1}}{(2n-1)!} \]

RMK.
- Convergence radius $R = +\infty$
- \cos, \sin are extensions of $\cos x, \sin x$ for $x \in \mathbb{R}$

Ref.
\[\cos z = \frac{1}{2} (e^{iz} + e^{-iz}) \]
\[\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) \]
\[e^{iz} = \cos z + i \sin z \]
\[\cos^2 z + \sin^2 z = 1 \]
\[z = |z| e^{i \theta} \quad \theta = \arg z \]

Def. A function f is periodic with period c if $f(z+c) = f(z)$ for all $z \in \mathbb{C}$

Ex. Find the period of e^z.
\[e^{z+c} = e^z \quad e^c = 1 \]
\[c = a + ib \quad a, b \in \mathbb{R} \]
\[e^c = e^a (\cos b + i \sin b) = 1 \]
\[a = 0 \quad b = 2k\pi \quad \text{for } k \in \mathbb{Z} \]
\[c = 2\pi ki \quad k \in \mathbb{Z} \]

$z \rightarrow e^z : \mathbb{C} \rightarrow \mathbb{C}$ is not one-to-one.

It has no inverse functions.

We take a branch of its multi-valued inverse.
Def. If \(G \) is an open and connected subset of \(\mathbb{C} \),
and \(f : G \to \mathbb{C} \) is a continuous function
\(\text{s.t. } z = \exp f(z) \text{ for } z \in G \),
then \(f \) is a branch of the logarithm.

Rmk. \[|e^z| = e^{\text{Re}z} > 0. \]
\[e^z : \mathbb{C} \to \mathbb{C} - \{0\}. \]
So we must have \(0 \notin G \).

Prop. If \(G \subseteq \mathbb{C} \) is open and connected, and \(f : G \to \mathbb{C} \) is a
branch of \(\log z \),
then \(g : G \to \mathbb{C} \) is a branch of \(\log z \),
\[\text{iff } g(z) = f(z) + 2k\pi i \text{ for some } k \in \mathbb{Z}. \]

Proof. ('\(\Rightarrow \)') easy.
\[\Rightarrow \text{ set } h(z) = \frac{1}{2\pi i} (f(z) - g(z)) \]
\[e^{2\pi i} h(z) = e^{f(z)} - e^{g(z)} \]
\[= \frac{z}{z} \]
\[= 1 \text{ for } z \in G \]
Thus \(h(z) \in \mathbb{Z} \).

Since \(h \) is continuous, and \(G \) is connected,
\(h \) is a constant integer.
So \(f(z) - g(z) = 2\pi i k \) for some \(k \in \mathbb{Z}. \)

Ex. \[G = \mathbb{C} - \{ z \in \mathbb{R} : z \leq 0 \} \]
\[f : G \to \mathbb{C} \]
\[\forall z \in G, z = re^{i\theta} \theta \in (-\pi, \pi) \]
\[f(z) = f(re^{i\theta}) \text{ defines } \log r + i\theta. \text{ principle branch.} \]
Prop. Let \(G \) and \(\mathbb{R} \) be open subsets of \(\mathbb{C} \).

Suppose that \(f: G \to \mathbb{C} \) and \(g: \mathbb{R} \to \mathbb{C} \) are continuous functions

\[
s.t. \quad f(z) \in \mathbb{R} \quad \text{and} \quad g(f(z)) = z \quad \text{for} \quad z \in \mathbb{R}.
\]

If \(g \) is differentiable and \(g'(z) \neq 0 \),

then \(f \) is differentiable and

\[
f'(z) = \frac{1}{g'(f(z))}.
\]

Furthermore, if \(g \) is analytic, then \(f \) is analytic.

If: Fix \(a \in G \), and let \(h \in \mathbb{C} \) s.t. \(h \neq 0 \) and \(a + h \in G \).

Note that \(\alpha = g(f(a)) \) and \(\alpha + h = g(f(a + h)) \)

implies that \(f(a) \neq f(a + h) \).

\[
1 = \frac{g(f(a + h)) - g(f(a))}{h} = \frac{g(f(a + h)) - g(f(a))}{h} \quad \text{for} \quad h \\
\]

Thus,

\[
\left| \frac{g'(f(a)) - g'(f(a))}{h} \right| \to 0 \quad \text{as} \quad h \to 0
\]

Thus,

\[
\lim_{h \to 0} \frac{g(f(a + h)) - g(f(a))}{f(a + h) - f(a)} = g'(f(a))
\]

Thus, \(h \to 0 \quad f(a + h) - f(a) \quad \text{exists} \)

and

\[
\lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \frac{1}{g'(f(a))}.
\]

Thus,

\[
f'(a) = \frac{1}{g'(f(a))} \quad \text{is continuous}
\]

So, \(f \) is analytic.

RMK: Any branch of \(\log \) is analytic.
Complex - Riemann equation

\[f: \mathbb{C} \rightarrow \mathbb{C} \]

\[z \rightarrow f(z) \]

\[z = x + iy \quad f(x+iy) = u(x,y) + iv(x,y) \]

Suppose \(f \) is analytic

\[f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} \]

We evaluate the limit in two ways.

1. Take \(h \in \mathbb{R} \)

\[\frac{f(z+h) - f(z)}{h} = \frac{u(x+th, y) - u(x,y)}{h} + i \frac{v(x+th, y) - v(x,y)}{h} \]

\[\rightarrow u_x(x,y) + iv_x(x,y) \]

2. Take \(h = it \) and \(t \in \mathbb{R} \)

\[\frac{f(z+ith) - f(z)}{ith} = \frac{u(x, th+y) - u(x,y)}{ith} + i \frac{v(x, th+y) - v(x,y)}{ith} \]

\[\rightarrow -i u_y(x,y) + v_y(x,y) \]

Comparing the limits,

\[\begin{align*}
 u_x(x,y) &= v_y(x,y) \\
 u_y(x,y) &= -v_x(x,y)
\end{align*} \]

This is the so-called Cauchy-Riemann equations.

Prop 2.10: \(G \) is a region in \(\mathbb{C} \)

\(f: G \rightarrow \mathbb{C} \) is analytic and \(f' \equiv 0 \) in \(G \)

Then \(f \) is a constant.
\(f : \mathbb{C} \to \mathbb{C} \)

\[f = u + iv \]

\(f \) is analytic \(\Rightarrow \) Cauchy–Riemann equations.

Q. How about the converse?

Thm 2.29. Let \(u \) and \(v \) be real-valued functions defined on a region \(\mathbb{C} \) and suppose that \(u \) and \(v \) have continuous partial derivatives.

Then \(f : \mathbb{C} \to \mathbb{C} \) defined by \(f(z) = u + iv \) is analytic iff \(u \) and \(v \) satisfy the Cauchy–Riemann equations.

pf. \(\Rightarrow \)

\[f = u + iv \]

\[\frac{f(x+it) - f(x)}{it} = \frac{U(x_2, y_2) - U(x, y)}{it} + i \frac{V(x_2, y_2) - V(x, y)}{it} \]

\[u(x_2, y_2) - u(x, y) \]

\[= u(x_1, y_1) - u(x_1, y_1) + u(x_1, y_1) - u(x, y) \]

\[= u_x(x_1, y_1) \cdot s + u_y(x_1, y_1) \cdot t \]

\(s \in (0, s) \)

\(t \in (0, t) \)

Similarly,

\[v(x_2, y_2) - v(x, y) \]

\[= v_x(x_1, y_1) \cdot s + v_y(x_1, y_1) \cdot t + o(s) + o(t) \]
\[
\frac{f(z+st+it) - f(z)}{st+it} = \frac{u_x(x,y)s + u_y(x,y)t + iv_x(x,y)s + iv_y(x,y)t}{st+it} + o(1)
\]

\[
= \frac{(u_x(x,y) + iv_x(x,y))s + (u_y(x,y) + iv_y(x,y))t}{st+it} + o(1)
\]

CR equations:

\[
\frac{d}{dt}(u_x(x,y) + iv_x(x,y))s + (u_y(x,y) + iv_y(x,y))t + o(1)
\]

\[
= u_x(x,y) + iv_x(x,y) + o(1)
\]

\[
\lim_{st+it \to 0} \frac{f(z+st+it) - f(z)}{st+it} = u_x(x,y) + iv_x(x,y)
\]

\[\Box\]