Recall. Assume $u,v: G \to \mathbb{R}$ have cont. partial derivatives (aka C^1) then: $f = u + iv: G \to \mathbb{C}$ is analytic $\iff \begin{cases} U_x = V_y \\
U_y = -V_x \end{cases}$ (Cauchy-Riemann or CR) in G.

Def. A function u is harmonic if $u \in \mathbb{C}^2$ and

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = u_{xx} + u_{yy} = 0 \text{ in } G.$$

Rem. If u, v are C^2 and satisfy CR, then since mixed partial derivatives commute

$$u_{xx} = v_{yy} = v_{yx} = -u_{yy},$$

i.e. $u_{xx} + u_{yy} = 0$, so u is harmonic.

A similar computation shows v is harmonic.

Def. If u, v are harmonic in G and $f = u + iv$ is analytic (i.e. satisfy CR), then v is harmonic conjugate of u.

Prop. Assume v_1, v_2 are both harmonic conjugates of u in G, and G is connected. Then \exists constant $C \in \mathbb{C}$ s.t. $v_1 - v_2 = C$.

Pf. Fix $B(a,r) \subseteq G$. For simplicity of notation and WLOG: $a = 0$.

For any harm. conj. v, \[\left\{ \begin{array}{l}
V_x = -U_y \\
V_y = U_x
\end{array} \right. \]

\[V(x, y) - V(0, 0) = V(x, y) - V(x, 0) + V(x, 0) - V(0, 0) = \int \left[\int_{x}^{y} V_y(x, t) \, dt + \int_{0}^{y} V_x(s, 0) \, ds \right]
\]

$\therefore \int \left[\int_{x}^{y} V_y(x, t) \, dt + \int_{0}^{y} V_x(s, 0) \, ds \right]
\]

Thus, $V(x, y) = \int_{0}^{y} U_x(x, t) \, dt - \int_{0}^{y} U_y(s, 0) \, ds + V(0, 0)$.

Therefore: $\int_{0}^{y} U_x(x, t) \, dt - \int_{0}^{y} U_y(s, 0) \, ds + V(0, 0) = C.$
\Rightarrow in $B(a, r) \subseteq G$, $v_1(x+iy) - v_2(x+iy) = v_1(a) - v_2(a) = C$

Let $A := \{z = x+iy \in G : v_1(x+iy) - v_2(x+iy) = C \}$. Then $A \neq \emptyset$ and

Claim 1. A is open.

Let $a \in A$, and choose $B(a, r) \subseteq G$. By same arg. as above

$v_1(x+iy) - v_2(x+iy) = v_1(a) - v_2(a), \forall x+iy \in B(a, r)$. But

$v_1(a) - v_2(a) = C$ by assumption $\Rightarrow B(a, r) \subseteq A \Rightarrow A$ open.

Claim 2. A is closed.

Let b be limit point of A and $\{a_n\}$ seq. in A s.t. $a_n \to b$. Then

$C = v_1(a_n) - v_2(a_n) \to v_1(b) - v_2(b)$ by cont. of v_1, v_2.

But then $b \in A \Rightarrow A$ closed since it contains all of its limit points.

Thus 1. Assume G is either $B(a, r)$ or C. Then, every harmonic $u : G \to \mathbb{R}$ has a unique harmonic conjugate up to additive constant.

Pf. The part about unique up to additive constant is the content of Prop 1 (for any connected G).
The existence follows from the proof of Prop 1.
In $B(a, r)$ or C, we can define v by (WLOG, $a = 0$)

$v(x+iy) = \int_0^x u_x(x, t) dt - \int_0^y u_y(s, 0) ds$.

By FTC, $v_y(x+iy) = u_x(x, y)$.

Also, $v_x(x+iy) = \int_0^y u_{xx}(x, t) dt - u_y(x, 0) = \{A u = 0\}$

\[v_1, v_2, \ldots, v_n, \ldots \]
\[\frac{d}{dt} \Phi_y(x, t) + \Phi_y(x, t) \frac{dx}{dt} = \Phi_y(x, 0) \]

\[= -\left(\Phi_y(x(t), t) - \Phi_y(x(0), t) \right) - \Phi_y(x(0), t) \]

\[= -\Phi_y(x(t)) \]

\[\frac{\partial}{\partial t} \Phi_y(x, t) \]

Remark: If requires \(\exists \theta \in G \) s.t. \(z = x + iy \) then figure is contained in \(G \) for all \(z = x + iy \in G \).

- In \(G = \mathbb{C} \setminus \{0\} \), \(u = \log |z|^2 \) is harmonic (Why?) but
- if \(v \) were harmonic, then \(f = u + iv = \log z + C \), for some analytic branch of \(\log z \) in \(G \), but as we have seen, there is no analytic branch of \(\log z \) in \(\mathbb{C} \setminus \{0\} \).

Analytic functions as mappings.

Def. A path (or curve) in \(G \subset \mathbb{C} \) (region) is a cont. map \(\gamma : [a, b] \to G \). \(\gamma \) is \((C^1)\) smooth if \(\gamma' \) exists and is cont. on \([a, b]\). \(\gamma \) is piecewise smooth if \([a, b] = \bigcup_{k=1}^{m} [a_k, a_{k+1}] \) with \(a_0 = a \), \(a_n = b \) and \(\gamma \) smooth on each \([a_k, a_{k+1}]\).

(2) If \(\gamma_1, \gamma_2 : [a, b] \to G \) are smooth paths and for some \(t_0 \in (a, b) \)
\(\gamma_1(t_0) = \gamma_2(t_0) = z_0 \), and \(\gamma_1'(t_0) \neq 0 \); \(\gamma_2'(t_0) \neq 0 \), then the angle between \(\gamma_1 \) and \(\gamma_2 \) is \(\angle (\gamma_1, \gamma_2)_{t_0} \in [-\pi, \pi] \).
The angle between \(\gamma_1 \) and \(\gamma_2 \) is \(\angle (\gamma_1, \gamma_2) \equiv \angle (\tilde{\gamma}_1, \tilde{\gamma}_2) \equiv \angle \left(\gamma_1(t_0), \gamma_2(t_0) \right) \).

Note on Conway's def.

Note: If \(f : G \to \mathbb{C} \) is a complex function, we can view it as a map:

\[
\begin{array}{ccc}
\mathbb{C} & \xrightarrow{f} & \mathbb{C} \\
\downarrow & & \downarrow \\
G & \xrightarrow{\mu} & f(G)
\end{array}
\]

(or angle preserving)

- If \(f = \text{univ w/ } u, v \in \mathbb{C} \), \(f \) is conformal at \(z_0 \) if \(\forall \) smooth paths \(\gamma_1, \gamma_2 : [a, b] \to G \), as in \(\theta \) above, the angle between \(\gamma_1 \) and \(\gamma_2 \) at \(t_0 \) equals the angle between \(\mu_1 := f \circ \gamma_1 \) and \(\mu_2 := f \circ \gamma_2 \) at \(t_0 \) (meaning also \(\mu_1'(t_0) \neq 0 \), \(\mu_2'(t_0) \neq 0 \)).

Thm. 2. If \(f \) is analytic in \(G \) and \(f' \neq 0 \) in \(G' \subseteq G \), then \(f \) is conformal in \(G' \).

Pf. Let \(\gamma_1, \gamma_2 \) be as above w/ \(z_0 = \gamma_1(t_0) = \gamma_2(t_0) \) e \(G' \). Since \(f \) is analytic, chain rule \(\Rightarrow \)

\[
\mu_1'(t_0) = f'(z_0) \gamma_1'(t_0) \quad \text{and} \quad \mu_2'(t_0) = f'(z_0) \gamma_2'(t_0)
\]

and \(f'(z_0) \neq 0 \). Thus, \(\mu_1'(t_0), \mu_2'(t_0) \) are obtained from \(\gamma_1'(t_0), \gamma_2'(t_0) \) by multiplication by same
from \(f_1(z), f_2(z) \) by multiplication by same nonzero number \(f(z) \) we immediately see
\[
\lambda (f_1(z_1)f_2(z_2)) = \lambda (f_1(z_1)f_2(z_2)) \Rightarrow f \text{ is conformal at } z_0.
\]

\[\square\]

Möbius Transformations.

Def. A **linear fractional transformation** is a map \(S : \mathbb{C} \to \mathbb{C} \)
given by
\[
S(z) = \frac{az + b}{cz + d}, \quad S(-d/c) = 0, \quad S(\infty) = a/c.
\]

- \(S(z) \) is a **Möbius transformation** if \(ad - bc \neq 0 \).

Basic Props of Möbius Trans.

1. \(S : \mathbb{C} \to \mathbb{C} \) is a homeomorphism (cont. & bijective), and
 an analytic function on \(\mathbb{C} - \{ -d/c \} \).

2. The inverse is
 \[
 S^{-1}(z) = \frac{d_2 - b}{-cz + a}.
 \]

3. If \(S(z) = z \) has 3 solutions \(z_1, z_2, z_3 \in \mathbb{C} \) (fixed pts),
 then in fact \(S(z) \) is identity map (\(S(z) = z \)).

Sketch of pf.

1. Analyticity is clear. Cont. on \(\mathbb{C} \) is Ex.
 Bijection follows from (2).

2. Solve equation \(w = \frac{az + b}{cz + d} \) for \(z \).

3. Consider the equation
 \[
 z = \frac{az + b}{cz + d} \Rightarrow cZ^2 + (d - a)Z - b = 0. \quad (x)
 \]
 Either \(c = 0, \ d = a, \ b = 0 \) \(\Rightarrow S(z) = z \) or
 (no solution).

Either \(c = 0, \ d = a, \ b = 0 \) \(\Rightarrow S(z) = z \) or

\[\square\]
Either $c = 0$, $\alpha = \infty$, $a - c = \infty$, or

(x) is non-trivial quadratic eq. \Rightarrow can at most have 2 distinct solutions.

Prop 2. Given $Z_1, Z_2, Z_3 \in \mathbb{C}$, unique Möbius S w/ $S(Z_1) = 1$, $S(Z_2) = 0$, $S(Z_3) = \infty$.

Let $Z_1, Z_2, Z_3 \in \mathbb{C}$ then

$$S(Z) = \frac{Z-Z_2}{Z-Z_3} \cdot \frac{Z_1-Z_3}{Z_1-Z_2}.$$

If say $Z_2 = \infty$, then $S(Z) = \frac{Z_1-Z_3}{Z-Z_3}$, etc.

Thus, given $Z_1, Z_2, Z_3, W_1, W_2, W_3 \in \mathbb{C}$, unique S w/ $S(Z_j) = W_j$ for $j = 1, 2, 3$.

Let T_1, T_2 be maps given by Prop 2 for (Z_1, Z_2, Z_3) and (W_1, W_2, W_3) respectively. Then $S = T_2^{-1} \circ T_1$ does the trick. To see this, S is unique, we note that if there are S_1, S_2 that sends (Z_1, Z_2, Z_3) to (W_1, W_2, W_3), then $S_2^{-1} \circ S_1$ has 3 fixed points (namely Z_1, Z_2, Z_3) and hence, $S_2^{-1} \circ S_1 = I$ or

$S_1 = S_2$.

\Box