Proof of Lemma 1., Cor. 1-2 in Lecture 9 Notes.

Recall: Thm 1. Let \(\Omega \subseteq \mathbb{C}^n \). TFAE:

(i) \(\Omega \) is a d.o. holom.

(ii) \(\forall K \subseteq \Omega, \overline{K} \subseteq \Omega \).

(iii) \(\exists \Omega' \subseteq \Omega \) that does not extend across any body pt. i.e.

\[\exists \Omega', \quad \forall \Omega, \Omega \cap \Omega' \neq \emptyset, \quad \Omega \cap \Omega' \neq \emptyset, \quad \text{Fe} \Omega' \subseteq \Omega \setminus F_{\Omega} = \emptyset. \]

Proof.

(i) \(\Leftrightarrow \) (iii) is Cor. 2 from Lecture 9.

(iii) \(\Leftrightarrow \) (i) is immediate from def. of d.o. holom.

(ii) \(\Rightarrow \) (iii).

WL06, assume \(\Omega \) connected. Let \(D^n = \{ z \in \mathbb{C}^n : |z| < 1 \} \),

\[\Delta(z) = \Delta_{D^n}(z) = \sup \{ r > 0 : \{ z \in \mathbb{C}^n : |z| < r \} \subseteq \Omega \} \]

as in Lemma 1, and let \(D_z = \{ z \} + \Delta(z) D^n \subseteq \Omega \). Thus, \(D_z \) is largest polydisk of “shape” \(D^n \) that is centered at \(z \) and contained in \(\Omega \).

Let \(M \) be a countable dense subset of \(\Omega \). Suffices to construct \(\text{Fe} \Omega'(\Omega) \) s.t. \(\Omega \) does not extend to open neighborhood of \(\overline{D}_z \) for any \(z \in M \). For, if \(\Omega_1, \Omega_2 \) as in (iii) exist then \(\exists z \in M \)

\[\overline{D}_z \subseteq \Omega_2. \]

Now let \(\{ z_j \}_{j=1}^{\infty} \) be a sequence in \(\Omega \) s.t. each \(z \) in \(M \) appears \(\infty \) many times. Let \(\{ K_j \}_{j=1}^{\infty} \) be an exhaustion of \(\Omega \) by compact sets (\(K_1 \subseteq K_2 \subseteq \ldots \subseteq \Omega = \bigcup_{j=1}^{\infty} K_j \), and \(\forall K \subseteq \Omega, \ K \subseteq K_j, j > 1 \)).

Since \(\hat{K}_j = \bigcup_{j=1}^{\infty} K_j \subseteq \Omega \), by assumption and \(\overline{D}_z \cap \Omega \neq \emptyset \).
Since \(R_j = (K_i)_j \subseteq \Omega \) by assumption and \(D_3 \cap (2\Omega) \neq \emptyset \) by construction, \(\exists Z_j \in D_3 \setminus R_j \). Hence, \(\exists f_j \in C(\Omega) \) s.t. \(f_j(Z_j) = 1 \) and \(\sup_{K_j} |f_j| < 1 \). By replacing \(f_j \) by \(f_j^p \), \(p > 1 \), WLOG assume \(f_j(Z_j) = 1 \), \(\sup_{K_j} |f_j| < \frac{1}{2^j} \). Consider the \(\infty \) product:

\[
 f = \prod_{j=1}^{\infty} (1 - f_j)^{-j}. \tag{1}
\]

We know (Math 220B or C) that this product converges to a holomorphic function in \(\Omega \) s.t. \(f(z) = 0 \) only when \(f_j(z) = 1 \), some \(j \)

\[\iff \forall K \subseteq \Omega, \sum_{j=1}^{\infty} j \sup_{K_j} |f_j| < \infty \]

But \(K \subseteq K_j, j \geq N \). Since \(\sup_{K_j} |f_j| < \frac{1}{2^j} \) and \(\sum_{j=1}^{\infty} \frac{j}{2^j} < \infty \),

it follows that (1) converges a holomorphic function \(f \) s.t. \(f \neq 0 \) and \(f_{2^k}(z_j) = 0 \), \(\forall |z| < j \). Pick \(z \in M \), \(\exists \) subsequence \(z_{3^k} = z \) and hence \(z_{3^k} \in D_3 \setminus R_j \). Going to a subsequence if necessary.

WLOG assume \(z_{3^k} \to z_0 \in \partial D_3 \). Since \(f \) vanishes to order at least \(3^k - 1 \) at \(z_{3^k} \), if \(f \) extended as holomorphic function in nbhd of \(D_3 \), we would have \(f_{2^k}(z_0) = 0 \), \(\forall k \implies f \equiv 0 \) in \(D_3 \) and hence in \(\Omega \). Since \(f \neq 0 \) by construction, the pf is complete. \(\blacksquare \)