Pseudoconvexity.

Recall. If \(\delta(z) = \max(\|z\|, \ldots, \|z\|) \) and \(\delta(z, \mathbb{C}^n \setminus \Omega) = \inf_{w \in \Omega} \delta(z, w) \), then:

Prop 1. If \(\Omega \subset \mathbb{C}^n \) is d.o.holom., \(\mathbb{K} \subset \mathbb{C} \), \(f \in \mathcal{O}(\Omega) \) s.t. \(f(z) \leq \delta(z, \mathbb{C}^n \setminus \Omega) \)
on K, then \(\|f(z)\| \leq \delta(z, \mathbb{C}^n \setminus \Omega) \) in \(K \).

Rem. The conclusion can be proved w/ any continuous function \(\delta(z) \) s.t.

\[\delta(z) = |11^{\delta(z)}|, \quad \delta(z) = \left(\sum_{i=1}^{\infty} |z_i|^i \right)^{1/p}, \quad \text{\(\ell^p \)-norm}. \]

Def. Let \(\Omega \subset \mathbb{C}^n \) d.o.holom. and \(\delta(z) > 0 \) as in Rem above.

Then, the log \(u(z) = -\log \delta(z, \mathbb{C}^n \setminus \Omega) \) is continuous and \(\mathbb{P}_{SH}(\Omega) \).

Proof. Cont. of \(u \) follows from continuity of \(\delta(z, \mathbb{C}^n \setminus \Omega) \). The latter is \(\mathbb{K} \).

Pick \(z \in \Omega \), \(w \in \mathbb{C}^n \), \(t \in \mathbb{R} \), and consider \(V(t) = u(z + tw) \). Let \(K = \{ z + tw : \|z\| \leq 3 \} \subset \mathbb{C}^n \).

Clearly, by Max. Mod. Princ. in \(\mathbb{C} \), we conclude \(\delta(z + tw, \mathbb{C}^n \setminus \Omega) \leq K \). Let \(p(z) \) be any holom. polynomial in \(\mathbb{C}^n \), and \(Q(z) \) a holom. poly. in \(z \in \mathbb{C}^n \) s.t. \(p(z) = Q(z+w) \).

If \(V(t) \leq \Re(p(z)) \) on \(|t| = 3 \), then \(e^{V(t)} \leq |e^{p(z)}| \) on \(|t| = 3 \) or, equivalently,

\[\delta(z + tw, \mathbb{C}^n \setminus \Omega)^{-1} \leq |e^{Q(z+tw)}|, \quad |t| = 3 \quad (1) \]

If we set \(p(z) = e^{-Q(z)} \in \mathcal{O}(\mathbb{C}^n) \), then inverting (1) \(\Rightarrow \)

\[|f(z)| \leq \delta(z, \mathbb{C}^n \setminus \Omega), \quad z \in K. \]

By Prop 1, \(|f(z)| \leq \delta(z, \mathbb{C}^n \setminus \Omega) \), \(z \in K \), which in particular implies

\[V(t) \leq \Re(p(z)), \quad |t| \leq 3. \]

This \(\Rightarrow \) \(V \) is \(\mathbb{K} \) in \(|t| < 3 \) \(\Rightarrow \) \(u \in \mathbb{P}_{SH}(\Omega) \).
Def. Let \(\Omega \subseteq \mathbb{C} \) and \(K \subseteq \mathbb{C}^n \).\n\[
K_\Omega^P = \{ z \in \Omega : u(z) \leq \sup_{z' \in K} u(z') , \forall u \in \text{PSH}(\Omega) \}.
\]

Rem. Note that \(f(\Omega) \Rightarrow u = \log |f| \in \text{PSH}(\Omega) \). Thus, if \(z \in K_\Omega^P \), then \(\log |f(z)| \leq \sup_{K} \log |f| \Rightarrow |f(z)| \leq \sup_{K} |f| \Rightarrow z \in K_\Omega^P \).
\[
\Rightarrow \ \overline{K_\Omega^P} \subseteq \overline{K_\Omega^P}.
\]

W/ \(\delta(z, c_n \Omega) \) as above (conv. + \(\delta(z) = 1 + \delta(z) \), etc.):

Thm 6. Let \(\Omega \subseteq \mathbb{C}^n \). TFAE:

(i) \(u(z) = -\log \delta(z, c_n \Omega) \in \text{PSH}(\Omega) \) or \(\Omega = c_n \).
(ii) \(\exists \text{ cont. } \text{PSH}(\Omega) \) from \(v(z) \leq 1 \). \(\overline{\Omega}_c := \{ z \in \Omega : v(z) \leq c \} \subseteq \Omega \), \(\forall c \in \mathbb{R} \).
(iii) \(\forall K \subseteq \mathbb{C}^n \), \(\overline{K} \subseteq \mathbb{C}^n \).

Rem. A consequence is that (i) holds for all \(\delta \) if it holds for some \(\delta \).

Pr. (i) \(\Rightarrow \) (iii). Take \(v(z) = 1 - \frac{1}{2} \log \delta(z, c_n \Omega) \) if \(\Omega \neq c_n \) and \(1/2 \) if \(\Omega = c_n \).

(i) \(\Rightarrow \) (iii). Let \(K \subseteq \mathbb{C}^n \) and \(c = \sup_{K} v \). If \(z \in \overline{K} \), then \(v(z) \leq c \Rightarrow \overline{K} \subseteq \{ z \in \Omega : v(z) \leq c \} \).

Pr. (iii) \(\Rightarrow \) (i). Use the following lemma:

Lemma 1. If \(f : \Omega \rightarrow \Omega' \) is holomorph map and \(u \in \text{PSH}(\Omega') \), then \(u \circ f \in \text{PSH}(\Omega) \).

Pr. If \(u \in \mathbb{C}^2 \), then (iii) follows from Chain rule, since \(v = u \circ f \) satisfies
\[
\sum_{(i,j)} \frac{\partial^2 u}{\partial z_i \partial \bar{z}_j} w_i \bar{w}_j = \sum_{(i)} \left(\frac{\partial^2 u}{\partial z_i \partial \bar{z}_j} \frac{P_{i,j}}{z_j} \right) w_i \bar{w}_j = \sum_{(i)} \frac{\partial^2 u}{\partial z_i \partial \bar{z}_j} \sum_{(i)} \left(P_{i,j} w_i \bar{w}_j \right)
\]
\[
= \sum_{(i)} \frac{\partial^2 u}{\partial z_i \partial \bar{z}_j} w_i \bar{w}_j \ w_i = \sum_{(i)} \frac{\partial^2 u}{\partial z_i \partial \bar{z}_j} w_i \bar{w}_j \Rightarrow \sum_{(i)} \frac{\partial^2 u}{\partial z_i \partial \bar{z}_j} w_i \bar{w}_j \geq 0.
\]

If \(u \in \text{PSH} \) but not \(\mathbb{C}^2 \), let \(u_\varepsilon \in \mathbb{C}^2 \cap \text{PSH} \) be regularization, \(\varepsilon > 0 \).

Since \(u_\varepsilon \triangleq u \), \(v_\varepsilon = u_\varepsilon \circ f \). By above \(v_\varepsilon \in \text{PSH} \). Now,

conclusion follows from Ex. If \(v_\varepsilon \neq v \), \(v_\varepsilon \in \text{PSH} \), \(\Rightarrow v \in \text{PSH} \).

(iii) \(\Rightarrow \) (i) Prf. \(\varepsilon > 0 \), \(\forall c \in \mathbb{C}^n \) and let \(\lambda \in \mathbb{C}, \lambda \leq \varepsilon, s.t.

Conclusion follows from $\frac{1}{2} x + t \leq \varepsilon$.

(iii)\Rightarrow(i). Pick $z \in \Omega$, we C^1, and let $z \in \Omega$, $|t| \leq \varepsilon$, s.t.

$$D = \{z + tw : |t| \leq \varepsilon\} \subset \subset \Omega. \text{ Pick holom. poly. } f(t),$$

$$f(0) = 0, f(z) \text{ some holom. poly } \Omega(z), \text{ s.t.}$$

$$-\log \delta(z + tw, \Omega(z)) \leq \text{Re } f(t), \text{ } |t| = \varepsilon. \Rightarrow$$

$$\delta(z + tw, \Omega(z)) \geq e^{-f(t)}, \text{ } |t| = \varepsilon \text{ } (1)$$

Pick $a \in \Omega$, $\delta(a) < 1$, and consider $f(t) = z + tw + \lambda e^{-f(t)}$, $|t| \leq \varepsilon$, and $0 \leq \lambda \leq 1$. Let $D_a = \{f(t) : |t| \leq \varepsilon\}$. Have $D_0 = \overline{D} \subset \subset \Omega$.

Let $\Lambda = \{0 \leq \lambda \leq 1 : D_a \subset \subset \Omega\}$. We have $0 \in \Lambda$. Clearly, Λ is open.

Claim: Λ is closed.

Consider $K = \{z + tw + \lambda e^{-f(t)} : |t| = \varepsilon, 0 \leq \lambda \leq 1\}$. By (1), $K \subset \subset \Omega$.

Hence, $\forall \lambda \in \Lambda$, then $v(t) = u(z + tw + \lambda e^{f(t)})$ is SH on D_λ by Lemma 1.

$$\Rightarrow \text{ for } |t| < \varepsilon, \text{ by HMP, } v(t) \leq \sup_{|t| < \varepsilon} v(t) \leq \sup_{K} v(t) \Rightarrow$$

$$z + tw + \lambda e^{-f(t)} \in \Omega \Rightarrow \overline{D}_a \subset \subset \Omega, \forall \lambda \in \Lambda.$$

By continuity, if $\lambda_0 \in \Lambda$, $\lambda_0 \rightarrow \lambda \Rightarrow \overline{D}_a \subset \subset \Omega, \forall \lambda \in \Lambda. \Rightarrow \text{ claim.}$

Thus, $\Lambda \neq \emptyset$, Λ open, closed in $[0, 1] \Rightarrow \Lambda = [0, 1] \Rightarrow \overline{D} \subset \subset \Omega$, i.e. for any $|t| \leq \varepsilon$, $z + tw + \lambda e^{-f(t)} \in \Omega$. Moreover, since $a \in \Omega$ is arbitrary as long as $\delta(a) < 1$, we may conclude that the "δ-ball" $\{z + tw + \lambda e^{f(t)} : a \in \Omega, \delta(a) < 1\}$ centered at $z + tw$ is contained in Ω; i.e.

$$\delta(z + tw, \Omega(z)) \geq |e^{-f(t)}|, \forall |t| \leq \varepsilon.$$
centered at \(z^*+I_2W \) is contained in \(\Omega \); i.e.,
\[
\delta(z^*+I_2W, e^{u(x)}) \geq \lvert e^{f(z)} \rvert, \quad \forall \ l \leq 2.
\]

\[
\Leftrightarrow -\log \delta(z^*+I_2W, e^{u(x)}) \leq \text{Re } f(z), \quad 1 \leq \delta \Rightarrow -\log \delta(z, e^{u(x)}) \in \mathcal{P}(\Omega).
\]

Def. \(\Omega \subset \mathbb{C}^n \) is pseudoconvex if either (thus, all) conditions (i)-(iii) in Thm 6 holds.

Rem. The proof of (iii) \(\Rightarrow \) (i) in Thm 6 is an example of the Continuity Principle. Let \(\Omega \subset \mathbb{C}^n \) be \(\psi \text{cvx} \). Let \(\ell_x: \overline{D} \to \mathbb{C}^n \) a cont. family \(\{\ell_x\}_{x \in [0,1]} \) of holom. disks, \((\pi \in \overline{D}) \cap (\mathbb{C}^n), \ell_x(\pi) \in \mathbb{C}(\mathbb{D} \times [0,1]) \)

s.t.
\[
\begin{align*}
\text{(1)} & \quad \ell_0(\overline{D}) \subset \Omega^c \\
\text{(2)} & \quad \ell_x(\partial D) \subset \Omega^c, \quad x \in [0,1]
\end{align*}
\]

Then, \(\{\ell_x(\overline{D}); x \in [0,1]\} \subset \Omega^c \).

Pf. Essentially done in (iii) \(\Rightarrow \) (i) above. \(\Box \)