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1 Complex Exponentials: For Appendix G Stewart Ed. 4

This material is a supplement to Appendix G of Stewart. You should read the appendix, except
maybe the last section on complex exponentials, before this material.

How should we define ea+bi where a and b are real numbers? In other words, what is ez when
z is a complex numbers? We would like the nice properties of the exponential to still be true.
Probably the most basic properties are for any complex numbers z and w we have

ez+w = ez ew and
d

dx
ewx = wewx. (1.1)

It turns out that the following definition produces a function with these properties.

Definition of complex exponential: ea+bi = ea(cos b + i sin b) = ea cos b + iea sin b

We now prove the first key property in (1.1).

Theorem 1.1 If z and w are complex number, then

ez+w = ezew.

Proof.
z = a + ib and w = h + εk

ezew = ea(cos b + i sin b)eh(cos k + i sin k)
= eaeh([cos b cos k − sin b sin k] + i[cos b sin k + sin b cos k])
= ea+h[cos(b + k) + i cos(b + k)]
= e[a+h+i(b+k)]

= ez+w

We leave checking the second property to the exercises. For those who are interested there is an
appendix, Section 6, which discusses what we mean by derivative and derives the second property
as well.

It’s easy to get formulas for the trig functions in terms of the exponential. Look at Euler’s
formula with x replaced by −x:

e−ix

We now have two equations in cos x and sinx, namely

cos x + i sinx = eix

cos x− i sinx = e−ix.

Adding and dividing by 2 gives us cos x whereas subtracting and dividing by 2i gives us sinx:
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Exponential form of sine and cosine: cos x =
eix + e−ix

2
sinx =

eix − e−ix

2i

Setting x = z = a + bi gives formulas for the sine and cosine of complex numbers. We can do
a variety of things with these formula. Here are some we will not pursue:

• Since the other trig functions are rational functions of sine and cosine, this gives us formulas
for all the trig functions.

• The hyperbolic and trig functions are related: cos x = cosh(ix) and i sin x = sinh(ix).

1.1 Complex Exponentials Yield Trig Identities

The exponential formulas we just derived together with ez+w = ezew imply the identities

sin2 α + cos2 α = 1

sin(α + β) = sinα cos β + cos α sin β

cos(α + β) = cos α cos β − sinα sinβ.

These three identities are the basis for deriving trig dentities. Hence we can derive trig identies by
using the exponential formulas and ez+w = ezew. We now illustrate this with some examples.

Example 1.2 Show that cos2 x + sin2 x = 1(
eix + e−ix

2

)2

+
(

eix + e−ix

2i

)2

=
1
4

[
(eix)2 + 2 + (e−ix)2 +

(eix)2 − 2 + (e−ix)2

i2

]
.

Since i2 = −1, this is

=
1
4
[
2 + 2

]
= 1

Example 1.3

sin 2x =
ei2x − e−i2x

2i
=

1
2i

[
(eix)2 − (e−ix)2

]
= 2

[eix − e−ix]
2i

[eix + e−ix]
2

= 2 sinx cos x



Supplement to Appendix G 5

1.2 Exercises

1. Use the relationship between the sine, cosine and exponential functions to express cos3 x as
a sum of sines and cosines.

2. Show that eπi + 1 = 0. This uses several basic concepts in mathematics (π, e, addition,
multiplication, exponentiation and complex numbers) in one compact equation.

3. What are complex cartesian coordinates x + iy of e2+3i.

4. Use
d(cos bx + i sin bx)

dx
= b[−sin bx + i cos bx]

and the product rule to prove

d e(a+ib)x

dx
= (a + ib)e(a+ib)x,

which is the key differentiation property for complex exponentials.
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2 Integration of Functions which Take Complex Values: For Ch.
7.2 Stewart Ed. 4

This supplements Chapter 7.2 of Stewart Ed. 4.
Now we turn to the issue of integrating functions which take complex values. Of course this

is bound up with what we mean by antiderivatives of complex functions. A function, like f(x) =
(1 + 2i)x + i3x2, may have complex values but the variable x is only allowed to take on real values
and we only define definite integrals for this type of function. In this case nothing differs from what
we already learned about integrals of real valued functions.

• The Riemann sum definition of an integral still applies.

• The Fundamental Theorem of Calculus is still true.

• The properties of integrals, including substitution and integration by parts still work.

For example,∫ 2

0
((1 + 2i)x + 3ix2) dx =

∫ 2

0
x + 2i

∫ 2

0
x + 3i

∫ 2

0
x2 dx =

(1 + 2i)x2

2
+ ix3

]2

0

= (1 + 2i)2 + 8i = 2 + 12i.

On the other hand, we can’t evaluate
∫ 1
0 (x + i)−1 dx right now. Why is that? We’d expect to

write
∫

(x + i)−1 dx = ln(x + i) + C and use the Fundamental Theorem of Calculus, but this has
no meaning1 because we only know how to compute logarithms of positive numbers.

2.1 Integrating Products of Sines, Cosines and Exponentials

In Section 7.2 products of sines and cosines were integrated using trig identities. There are other
ways to do this now that we have complex exponentials.

Examples will make this clearer.

Example 2.1 Let’s integrate 8 cos 3x sinx.

8 cos 3x sinx = 8
(

e3ix + e−3ix

2

)(
eix − e−ix

2i

)
=

2
i

(
e4ix + e−2ix − e2ix − e−4ix

)
.

Integrating this is easy∫
8 cos 3x sinx dx =

2
i

∫
e4ix + e−2ix − e2ix − e−4ix dx

=
2
i

[
e4ix

4i
− e−2ix

2i
− e2ix

2i
+

e−4ix

4i

]
1Some of you might suggest that we write ln |x+i| instead of ln(x+i). This does not work. Since |x+i| =

√
x2 + 1,

the function f(x) = ln |x+ i| only takes on real values when x is real. Its derivative cannot be the complex number
(x+ i)−1 since (f(x+ h)− f(x))/h is real.
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Sort this by powers of e±x to get

2
i

[
e4ix

4i
+

e−4ix

4i
− e−2ix

2i
− e2ix

2i

]

= −1
2

cos 4x + cos 2x

Example 2.2 Let’s integrate e2x sinx. In Section 7.1 problems like this were done using integration
by parts twice. Here is another way. Using the formula for sine and integrating we have∫

e2x sinx dx =
1
2i

∫
e2x(eix − e−ix) dx =

1
2i

∫
(e(2+i)x − e(2−i)x) dx

=
1
2i

(
e(2+i)x

2 + i
− e(2−i)x

2− i

)
+ C

=
−ie2x

2

(
eix(2− i)

5
− e−ix(2 + i)

5

)
+ C

Sort by powers of e±x to get

−ie2x

10
(
2(eix − e−ix)− i(e+ix + e−ix)

)
+ C

−e2x

10
(−4sinx + 2cosx) + C

This method works for integrals of products sines, cosines and exponentials, and often for
quotients of them, (though this requires more advanced methods, partial fractions). While using
complex exponentials takes the guess work out of computing such integrals it can be messier than
the method in the book, although often it is simpler. We point out that Example 2.1 went beyond
those illustrated in the book.

2.2 Exercises

Compute the following integrals using complex exponentials.

1.
∫ π

−π
7 sin 5x cos 3x dx

2.
∫

ei7x cos 2x dx

3.
∫

cos2 x e−3x dx
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3 The Fundamental Theorem of Algebra: For Ch. 7.4 Stewart
Ed. 4

A polynomial p of degree n is a function of the form

p(x) = p0 + p1x + p2x
2 + · · ·+ pnxn. (3.1)

where the coefficients pj can be either real or complex numbers. A basic fact which is hard to prove
(and we shall not attempt a proof here).

Fundamental Theorem of Algebra: Any nonconstant polynomial can be factored as
a product of linear factors with complex coefficients times a constant. Linear factors are
the form x− β.

This tells us that we can factor a polynomial of degree n into a product of n linear factors. For
example,

• 3x2 + 2x− 1 = 3(x− 1
3)(x + 1) (n = 2 here),

• x3 − 8 = (x− 2)(x + α)(x + α) where α = 1± i
√

3 (n = 3 here),

• (x2 + 1)2 = (x + i)2(x− i)2 (n = 4 here).

Thus, if we allow complex numbers, partial fractions can be done with only linear factors. When
we only allowed real numbers as coefficients of the factors, we obtained both linear and quadratic
factors.

3.1 Zeroes and their multiplicity

Notice a very important feature of the factorization is:

Each factor x− β of p corresponds to a number β which is a zero of the polynomial
p, namely,

p(β) = 0.

To see this just consider
p(β) = k(β − β1)(β − β2) . . . (β − βn).

The factorization of p evaluated at β. This is 0 if and only if one of the factors is 0; say the jth
factor is zero, which gives β − βj = 0. Thus β = βj for some j.

For some polynomials a factor x− βj will appear more than once, for example, in

p(x) = 7(x− 2)5(x− 3)(x− 8)2
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the x− 2 factor appears 5 times, the x− 3 factor appears once, the x− 8 factor appears twice. The
jargon for this is

2 is a zero of p of multiplicity 5

3 is a zero of p of multiplicity 1

8 is a zero of p of multiplicity 2.

The general form for a factored polynomial is

p(x) = k(x− β1)m1(x− β2)m2 . . . (x− β`)m` (3.2)

where βj is a zero of multiplicity mj and k is a constant.

3.2 Real Coefficients

All polynomials which you see in math 20B have real coefficients, so a useful fact is:

if all the coefficients qj of the polynomial q are real numbers, then

q(β) = 0 implies q(β) = 0.

To see this think of x as a real number. Suppose (x− α)k is a factor of q, then (x− α)k is also a
factor:

(a) Since (x− α)k is a factor of q(x), we have q(x) = (x− α)kr(x) for some polynomial r(x).

(b) With complex conjugates, q(x) = (x− α)kr(x).

(c) Since q(x) has real coefficients, q(x) = q(x) and so by (b), (x− α)k is a factor of q(x).

A polynomial p with real coefficients has a factorization

p(x) = (x− β1)(x− β1) · · · (x− βk)(x− βk)(x− r1) · · · (x− r`) (3.3)

or equivalently

p(x) = (x2 + b1x + c1) · · · (x2 + bkx + ck)(x− r1) · · · (x− r`) (3.4)

where b1, . . . , bk and c1, · · · , ck and r1, . . . , r` are real numbers. In fact you can check that bj =
2Re βj and cj = |βj |2. The advantage of the first representation is that all terms are linear in x
and the disadvantage is that some of them contain numbers βj which are not real. The advantage
of the second representation is that all numbers in the factoring are real.
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3.3 Rational Functions and Poles

The quotient of two polynomials p
q is called a rational function. For a rational function f we call

any number β for which |f(x)| is not bounded as x → β a pole of f . For example,

g(x) =
x7

(x− 1)2(x− 9)3

has a poles at 1, 9 and ∞. You might think calling ∞ a pole peculiar, but lim
x→∞

|g(x)| = ∞ as the
definition requires. Poles have multiplicity; in this case

1 is a pole of p of multiplicity 2

9 is a pole of p of multiplicity 3

∞ is a pole of p of multiplicity 2.

The growth rate of g near of a high multiplicity pole exceeds that of g near a low multiplicity
pole.

3.4 Exercises

1. Expand p = (x− 2)(x− 3)(x− 2 + 1) in the form (3.1).

2. Show that if p is a polynomial and p(5) = 0, then p(x)
x−5 is a polynomial.

3. (a)How many poles does the rational function r(x) = 3
6+x+5x3 have? Does it have a “pole at

∞”?
(b)What are the pole locations and multiplicities of r(x) = 3−2x

(x−2)(x2+5x+7)
?

4. The following is the simplest mathematical model used, for a building hit by an earthquake.
If the bottom of the building is displaced horizontally from rest a distance b(t) at time t, then
the roof of the building is displaced from vertical by a distance r(t). The issue is to describe
the relationship between b and r simply. Fortunately, there is a rational function Q(s) called
the transfer function of the building with the property that when b is a pure sine wave

b(t) = sin wt

at frequency w
2π , then r is a sine wave of the same frequency2 and with amplitude |Q(iw)|.

While earthquakes are not pure sine waves, they can be modeled by combinations of sine
waves.

If

Q(s) =
s2

(s + 3i + .01)(s− 3i + .01)(s + 7i + .1)(s− 7i + .1)
,

then at approximately what frequency does the building shake the most, the second most?
2r has the form r(t) = |Q(iw)|sin(wt+ ψ(iw))
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5. Electric circuits behave similarly and are typically described by their transfer function Q. If
c(t), a sinusoidal current of frequency w/2π is imposed, and v(t) is the voltage one measures
it is a sine wave of the same frequency with amplitude |Q(iw)|.
If

Q(s) =
1

(s + 3i + .01)(s− 3i + .01)
+

2
s− 10

,

then approximately how much accuracy do we lose in predicting the amplitude for our output
with the simpler mathematical model

Q̃(s) =
1

(s + 3i + .01)(s− 3i + .01)

When a sine wave at frequency w
2π is put in?

Hint: You may use
∣∣∣|Q̃(s)| − |Q(s)|

∣∣∣ ≤ |Q̃(s)−Q(s)| despite the fact we have not proved it.
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4 Partial Fraction Expansions PFE: For Ch. 7.4 Stewart Ed. 4

4.1 A Shortcut when there are no Repeated Factors

The partial fraction expansion can be found by the method in the text. There are easier methods
for computing the constants involved.

You especially save a lot of time when there are no repeated factors in the denominator. We’ll
tell you the general principle and then do some specific examples. Suppose that where α1, . . . , αn

are all distinct. Suppose also that the degree of p(x) is less than n Then

p(x)
(x− α1) · · · (x− αn)

=
C1

x− α1
+ · · ·+ Cn

x− αn
, (4.1)

where the constants C1, . . . , Cn need to be determined to find the partial fraction expansion. Mul-
tiply both sides of (2) by x−αi and then set x = −αi. The left side is some number. On the right
side, we are left with only Ci because all the other terms have a factor of x − αi which is 0 when
x = αi.

Now for some illustrations.

Example 4.1 (Partial fractions with no repeated factors. I) Let’s expand x2+2
(x−1)(x+2)(x+3) by partial

fractions.

f(x) =
x2 + 2

(x− 1)(x + 2)(x + 3)
=

C1

x− 1
+

C2

x + 2
+

C3

x + 3

Multiply by x− 1 to eliminate the pole at x = 1 and get

(x− 1)f(x) =
x2 + 2

(x + 2)(x + 3)
= C1 +

C2(x− 1)
x + 2

+
C3(x− 1)

x + 3
.

Set x = 1:
1 + 2

(1 + 2)(1 + 3)
= C1

and so C1 = 1
4 . Similarly,

C2 = (x + 2)f(x)
]
x=−2

=
x2 + 2

(x− 1)(x + 3)

]
x=−2

=
4 + 2
(−3)1

= −2

and

C3 = (x + 3)f(x)
]
x=−3

=
x2 + 2

(x− 1)(x + 2)

]
x=−3

=
9 + 2

(−4)(−1)
=

11
4

.

Example 4.2 (Partial fractions with no repeated factors. II) Let’s find a PFE of x+1
x3+x

. We have
f(x) = x+1

x3+x
has two natural forms of partial fraction expansion corresponding to whether we factor

the denominator x3 +x in the form (3.4) or (3.3). Stewart Ch. 7.4 Ed. 4 uses (3.4) so we emphasize
and recommend that one, namely

f(x) =
A

x
+

Bx + C

x2 + 1
.
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We proceed like Stewart, but save a little time with

A = xf(x)
]
x=0

=
1
1

= 1

Next multiply by x(x2 + 1) to get x + 1 = x(x2 + 1)f(x) = x2 + 1 + x(Bx + C). Cancel ones and
divide by x, to get

1 = x + Bx + C.

Set x = 0 to get C = 1 and so B = −1.
While students probably will not use the (3.3) form of expansion, for the sake of the curious,

we show how it is done.

f(x) =
x + 1

(x3 + x)
=

x + 1
x(x− i)(x + i)

=
C1

x
+

C2

x− i
+

C3

x + i
.

Since x = x− 0,

xf(x)
]
x=0

= C1 =
1

(−i)i
= 1.

Also

(x− i)f(x)
]
x=i

= C2 =
i + 1
i(2i)

=
−1− i

2
(x + i)f(x)

]
x=−i

= C3 =
−i + 1

(−i)(−2i)
=
−1 + i

2

Note that C3 = C̄2 and we can get the first PFE from this PFE by

f(x) =
1
x

+
C2

x− i
+

C3

x + i
=

1
x

+
C2(x + i) + C3(x− i)

x2 + 1
=

1
x

+
2ReC2x + (−2)ImC2

x2 + 1

f(x) =
1
x

+
−x + 1
x2 + 1

.

which is what we got before.

4.2 The Difficulty with Repeated Factors

Let us apply the previous method to

r(x) =
1

(x− 1)2(x− 3)

whose partial fraction expansion we know (by Stewart’s book) has the form

r(x) =
A

(x− 1)2
+

B

(x− 1)
+

C

x− 3
. (4.2)

We can find C quickly from

C = (x− 3)r(x)
]
x=3

=
1

(3− 1)2
=

1
4
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and A from
A = (x− 1)2r(x)

]
x=1

=
1

1− 3
= −1

2
.

However, B does not secumb to this technique; you must use other means to find it. What we have
gotten from our method is just the coefficients of the “highest terms” at each pole.

To find B many ways will do. For example, the one in Stewart will do and we have made it
go much faster by finding A and C. Another way to find the missing number B is to plug in one
value of x, say x = 0

1
(−1)2(−3)

= r(0) = −1
2 −B − 1

3
1
4

−B =
[−1

3 + 1
2 + 1

12

]
B = +1

12 .

4.3 Every Rational Function has a Partial Fraction Expansion

Now we mention a pleasant fact.

Theorem 4.3 Every rational function f = p
q has a partial function expansion.

The core of the reason is the fundamental Theorem of Algebra, which can be used to factor q as n
formal (3.2). This produces,

f(x) =
p(x)

(x− β1)m1(x− β2)m2(x− β`)m`
.

If f has real coefficients, then f can always be written

f(x) =
p(x)

(x2 + b1x + c1) · · · (x2 + bkx + ck)(x− r1) · · · (x− r`)
.

This is the factoring behind the various cases treated in Stewart Chapter 7.4 Ed 4. We emphasize
that the terms in f may repeat. One then needs to write out the appropriate form for the PFE and
then identify the coefficients as has been explained in Stewart Ed. 4 Ch. 7.4 and to some extent in
these notes.

4.4 The Form of the PFE

Here is one way to look at the form of the PFE of a rational function f . We just give the rough
idea which may be too vague to be very helpful.

Recall that a high multiplicity pole has a “faster growth rate” that a lower multiplicity pole.
Thus it can “overshadow” the lower multiplicity role.

Example 4.4 The function f(x) = 1
(x−1)2(x−3)

has a multiplicity 2 pole at 1 whose “strength is”

1
(x− 1)2

1
(1− 3)

=
−1
2

1
(x− 1)2

,
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but when we subtract this pole from f we get

e(x) = f(x)− −1
2

1
(x− 1)2

=
1

(x− 1)2

[
1

x− 3
+

1
2

]
e(x) =

1
(x− 1)(x− 3)

which still has a pole at 1, though now it is a pole of multiplicity 1. Thus we must include this
first order pole in the PFE, and this gives some intuition behind the correct form

f(x) =
A

(x− 1)2
+

B

(x− 1)
+

C

x− 3

for the PFE of f .

Similar intuition tells us that g(x) = x7

(x−1)2(x−9)3
has a PFE of the form

g(x) =
A

(x− 1)2
+

B

(x− 1)
+

C

(x− 9)3
+

D

(x− 9)2
+

E

x− 9
+ Fx2 + Gx + H.

4.5 Exercises

1. Use partial fraction techniques to solve Exercises 17 throught 46 in Section 7.2 Edition 4.

2. Find the partial fraction expansion of 2x+1
(x−1)2(x+2)

.

3. Given r(x) = 3
(x−1)(x−2)2

. What value of A makes r(x)− A
x−1 have its only pole located at 2?

4. Find the partial fraction expansion of x3+2
x(x2+1)(x2+4)

.

5. Find the partial fraction expansion of x3+2
x(x2−1)(x2−4)

.

6. Consider the PFE of r in (4.2). We claim that

d(x− 1)2r(x)
dx

]
x=1

is either A B, or C in the partial fraction expansion.
(a) Which is it? (b) Does such a formula hold for any rational function with a second order
pole? (Justify why). (b) Find a similar formula for a rational function with a third order
pole.

For n = 17, . . . , 46
n. Use partial fraction techniques to solve Exercises n in Section 7.2 Stewart Edition 4.
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5 Improving on Euler’s Method: For Ch. 9.2 Stewart Ed. 4

This supplements Chapter 9.2 Stewart Edition 4.
Suppose we are given the differential equation y′ = F (x, y) with initial condition y(x0) =

y0. Euler’s method, discussed in Section 9.2, produces a sequence of approximations y1, y2, . . . to
y(x1), y(x2), . . . where xn = x0 + nh are equally spaced points.

This is almost the left endpoint approximation in numerical integration (Chapter 7 of Steward
Ed. 4). To see this, suppose that we have an approximation yn−1 for y(xn−1), and that we want
an approximation for y(xn). Integrate y′ = F (x, y) from xn−1 to xn and use the left endpoint
approximation:

y(xn)− y(xn−1) =
∫ xn

xn−1

F (x, y) dx ≈ hF (xn−1, y(xn−1)).

Now we have a problem that did not arise in numerical integration: We don’t know y(xn−1). What
can we do? We replace y(xn−1) with the approximation yn−1 to obtain

y(xn)− yn−1 ≈ hF (xn−1, yn−1).

Rearranging and calling the approximation to y(xn) thus obtained yn we have Euler’s method:

yn = yn−1 + hF (xn−1, yn−1). (5.1)

We know that the left endpoint approximation is a poor way to estimate integrals and that the
Trapezoidal Rule is better. Can we use it here? Adapting the argument that led to (1) for use with
the Trapezoidal Rule gives us

yn = yn−1 +
h

2

(
F (xn−1, yn−1) + F (xn, yn)

)
. (5.2)

You should carry out the steps. Unfortunately, (2) can’t be used: We need yn on the right side in
order to compute it on the left!

Here is a way around this problem: First, use (1) to estimate (“predict”) the value of yn and
call this prediction y∗n. Second, use y∗n in place of yn in the right side of (2) to obtain a better
estimate, called the “correction”. The formulas are

(predictor) y∗n = yn−1 + hF (xn−1, yn−1) (5.3)

(corrector) yn = yn−1 +
h

2

(
F (xn−1, yn−1) + F (xn, y∗n)

)
.

This is an example of a predictor-corrector method for differential equations. Here are results for
Example 9.2.3, the differential equation y′ = x + y with initial condition y(0) = 1:
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step

size y(1) by (1) y(1) by (3)

0.50 2.500000 3.281250

0.20 2.976640 3.405416

0.10 3.187485 3.428162

0.05 3.306595 3.434382

0.02 3.383176 3.436207

0.01 3.409628 3.436474

The correct value is 3.436564, so (3) is much better than Euler’s method for this problem.

5.1 Exercises

1. Write down a predictor-corrector method based on Simpsons Rule for numerical integration.
Hint: a bit tricky is that we consider not two but three grid points xn−2, xn−1, xn and assume we
know fn−2 and fn−1. The problem for you is give an algorithm for producing fn.
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6 Appendix: Differentiation of Complex Functions

Suppose we have a function f(z) whose values are complex numbers and whose variable z may also
be a complex number. We can define limits and derivatives as Stewart did for real numbers. Just
as for real numbers, we say the complex numbers z and w are “close” if |z − w| is small, where
|z − w| is the absolute value of a complex number.3

• We say that limz→α f(z) = L if, for every real number ε > 0 there is a corresponding real
number δ > 0 such that

|f(z)− L| < ε whenever 0 < |z − α| < δ.

• The derivative is defined by f ′(α) = lim
z→α

f(z)− f(α)
z − α

.

Our variables will usually be real numbers, in which case z and α are real numbers. Nevertheless the
value of a function can still be a complex number because our functions contain complex constants;
for example, f(x) = (1 + 2i)x + 3ix2.

Since our definitions are the same, the formulas for the derivative of the sum, product, quotient
and composition of functions still hold. Of course, before we can begin to calculate the derivative
of a particular function, we have to know how to calculate the function.

What functions can we calculate? Of course, we still have all the functions that we studied
with real numbers. So far, all we know how to do with complex numbers is basic arithmetic. Thus

we can differentiate a function like f(x) =
1 + ix

x2 + 2i
or a function like g(x) =

√
1 + i ex since f(x)

involves only the basic arithmetic operations and g(x) involves a (complex) constant times a real
function, ex, that we know how to differentiate. On the other hand, we cannot differentiate a
function like eix because we don’t even know how to calculate it.

6.1 Deriving the Formula for ez Using Differentiation

Two questions left dangling in Section 1 were

• How did you come up with the definition of complex exponential?

• How do you know it satisfies the simple differential equation properties?

We consider each of these in turn.
In Appendix G Stuart uses Taylor series to come up with a formula for ea+bi. Since you haven’t

studied Taylor series yet, we take a different approach.
From the first of (1) with α = a and β = b, ea+bi should equal ea ebi. Thus we only need to

know how to compute ebi when b is a real number.
Think of b as a variable and write f(x) = exi = eix. By the second property in (1) with α = i,

we have f ′(x) = if(x) and f ′′(x) = if ′(x) = i2f(x) = −f(x). It may not seem like we’re getting
anywhere, but we are!

3The definitions are nearly copies of Stewart Sections 2.4 and 2.8. We have used z and α instead of x and a to
emphasize the fact that they are complex numbers and have called attention to the fact that δ and ε are real numbers.
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Look at the equation f ′′(x) = −f(x). There’s not a complex number in sight, so let’s forget
about them for a moment. Do you know of any real functions f(x) with
f ′′(x) = −f(x)? Yes. Two such functions are cos x and sinx. In fact,

If f(x) = A cos x + B sinx, then f ′′(x) = −f(x).

We need constants (probably complex) so that it’s reasonable to let eix = A cos x + B sinx. How
can we find A and B? When x = 0, eix = e0 = 1. Since

A cos x + B sinx = A cos 0 + B sin 0 = A,

we want A = 1. We can get B by looking at (eix)′ at x = 0. You should check that this gives
B = i. (Remember that we want the derivative of eix to equal ieix.) Thus we get

Euler’s formula: eix = cos x + i sinx

Putting it all together we finally have our definition for ea+bi.

We still need to verify that our definition for ez satifies (1). The verification that eα+β = eαeβ

is left as an exercise. We will prove that (ez)′ = ez for complex numbers. Then, by the Chain Rule,
(eαx)′ = (eαx)(αx)′ = αeαx, which is what we wanted to prove.

Example 6.1 (A proof that (ez)′ = ez)
By the definition of derivative and eα+β = eαeβ with α = z and β = w, we have

(ez)′

Let w = x + iy where x and y are small real numbers. Then

ew − 1
w

Since x and y are small, we can use linear approximations 4 for ex, cos y and sin y, namely 1 + x,
1 and y. (The approximation 1 comes from (cos y)′ = 0 at y = 0.) Thus (ew−1)

w is approximately

(1 + x)(1) + i(1 + x)y − 1
x + iy

When x and y are very small, their product is much smaller than either of them. Thus limw→0
ixy

x+iy = 0

and so limw→0
(ew−1)

w = 1. This shows that (ez)′ = ez.

4Linear approximations are discussed in Section 3.11 of Stewart.


