
Math 180C, Spring 2018

Supplement on the Renewal Equation

0. These remarks supplement our text and set down some of the material discussed in my lectures.

Unexplained notation is as in the text or in lecture.

1. In various contexts (continuous time Markov chains, renewal processes, etc.) we encounter

probabilities or expectations that depend on time t and satisfy a renewal equation:

(1.1) H(t) = h(t) +

∫ t

0

H(t− s)f(s) ds, t ≥ 0,

or, briefly,

(1.2) H = h+H ∗ f.

Here f is a probability density function on [0,∞), h : [0,∞)→ R is a bounded function (typically

continuous), and the function H is the “unknown”.

2. Example. The renewal function M(t) := E[N(t)] satisfies

M(t) =
∞∑
n=1

P[Wn ≤ t] =
∞∑
n=1

Fn(t),

where the cdf Fn(t) = P[Wn ≤ t] satisfies (condition on the value of X1, using the Law of Total

Probability)

Fn(t) =

∫ t

0

Fn−1(t− s)f(s) ds = Fn−1 ∗ f(t).

Therefore, because F1 = F ,

M(t) = F (t) +
∞∑
n=2

∫ t

0

Fn−1(t− s)f(s) ds

= F (t) +
∞∑
k=1

∫ t

0

Fk(t− s)f(s) ds

= F (t) +

∫ t

0

M(t− s)f(s) ds;

that is,

(2.1) M = F +M ∗ f,
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a special case of (1.2) when h = F . Integrating by parts we can see that

M ∗ f(t) =

∫ t

0

M(t− s)f(s) ds

= M(t− s)F (s)
∣∣∣s=t
s=0

+

∫ t

0

m(t− s)F (s) ds

=

∫ t

0

m(t− s)F (s) ds

=

∫ t

0

F (t− s)m(s) ds

= F ∗m(t).

(Recall that m := M ′ is the renewal density.) Consequently, we also have

(2.2) M = F + F ∗m

3. Some aspects of the solution H of the renewal equation (1.2) that appear in the preceding

example are generally true, as seen in parts (a) and (b) of the following theorem. Part (c) is the

“Key Renewal Theorem”.

Theorem. Let the bounded function h be fixed.

(a) If H satisfies

(3.1) H = h+ h ∗m

then max0≤s≤t |H(s)| <∞ for each t > 0 (H is said to be “locally bounded”) and

(3.2) H = h+H ∗ f.

(b) Conversely, if H is a locally bounded solution of (3.2) then H also satisfies (3.1).

( c) Suppose that H satisfies (3.1) (or, equivalently, (3.2))) and that h(t) ≥ 0 for all t and

h(t) ≤ h(s) for all t0 ≤ s ≤ t, for some t0 > 0 (h is “eventually decreasing”). Then

(3.3) lim
t→∞

H(t) =

∫∞
0
h(u) du

µ
,

where, as usual, µ =
∫∞
0
tf(t) dt is the inter-arrival time mean.

The proof of this theorem was sketched in class, using Laplace transforms. I will not repeat

it here.

4. Example. The renewal function M(t) = E[N(t)] satisfies the renewal equation M = h+M ∗f
with the choice h = F . Unfortunately, as noted in class,

∫∞
0
F (t) dt = +∞, so part (c) of the

Theorem is not informative.
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5. Key observation. All of our examples rely on a simple but crucial observation. The sequence

W = {W1,W2,W3, . . .} of arrival times of a renewal process splits into the first arrival time W1

and the (shifted) remaining arrival times W′ = {W ′1,W ′2,W ′3, . . .}, where W ′k := W ′k+1 −W1 =

X2 + · · · + Xk+1. Notice that W′ is independent of W1 and has the same distribution as W.

Another way to say this is that, given that W1 = s, the sequence {W2,W3,W4, . . .} becomes

{s+W ′1, s+W ′2, s+W ′3, . . .}, and as before W′ := {W ′1,W ′2,W ′3, . . .} has the same distribution as

W.

6. Example. Fix y > 0 and consider H(t) := P[γt > y] for t ≥ 0. One the one hand, γt = X1− t
on the event {Xt > t+ y}. On the event {t < X1 ≤ t+ y}, γt cannot be > y. Finally, on the event

{X1 ≤ t} we condition on the value of X1 = W1 being s, and observe that in this case,

γt = min{Wn : Wn > t, n ≥ 2} − t
= min{s+W ′k : W ′k > t− s, k ≥ 1} − t
= min{W ′k : W ′k > t− s, k ≥ 1} − (t− s)
= γ′t−s.

Therefore

P[γt > y|X1 = s] = P[γ′t−s > y] = H(t− s),

in which the second equality follows because γ′(t − s) has the same distribution as γt−s, being

related to W′ in the same was that γt−s is related to W. By the Law of Total Probability

P[γt > y,X1 ≤ t] =

∫ t

0

P[γt > t|X1 = s]f(s) ds =

∫ t

0

H(t− s)f(s) ds.

It follows that H(t) = h(t) +H ∗ f(t) for t ≥ 0, where h(t) = P[X1 > t+ y] = 1− F (t + y). You

have
∫∞
0
h(t) dt =

∫∞
y

[1− F (u) du, and so by Theorem 3 above,

lim
t→∞

P[γt > y] =

∫ ∞
y

1− F (u)

µ
du, y > 0.

In other words, the distribution of the random variable γt converges, as t→∞, to that of a random

variable γ∞ with cdf

Fγ∞(y) = 1−
∫ ∞
y

1− F (u)

µ
du =

∫ y

0

1− F (u)

µ
du,

and density (differentiate!)

fγ∞(y) =
1− F (y)

µ
.

7. Example. In this example we take H(t) = µ−1E[γt]. On the one hand, because γt =

WN(t)+1 − t, Wald’s Identity tells us that H(t) = 1 + M(t) − t/µ. On the other hand, by the

discussion in Example 6,

γt = 1{X1>t}(X1 − t) + 1{Xt≤t}γ
′
t−s

∣∣∣
s=W1

.
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Therefore, by the Law of Total Probability,

H(t) = µ−1E[X1 − t;X1 > t] +

∫ t

0

H(t− s)f(s) ds. t ≥ 0.

That is,

H = h+H ∗ f,

where

h(t) =
1

µ

∫ ∞
t

(x− t)f(x) dx =
1

µ

∫ ∞
t

[1− F (x)] dx,

and the second equality above follows from integration by parts. As we saw in class∫ ∞
0

h(t) dt =
1

µ

∫ ∞
0

∫ ∞
t

[1− F (x)] dx dt

=
1

µ

∫ ∞
0

∫ x

0

[1− F (x)] dt dx

=
1

µ

∫ ∞
0

x[1− F (x)] dx

=
1

2µ

∫ ∞
0

x2f(x) dx =
σ2 + µ2

2µ
,

where the penultimate equality results from integration by parts. By Theorem 3(c),

lim
t→∞

[
M(t)− t

µ

]
=

∫∞
0
h(t) dt

µ
− 1 =

σ2 − µ2

2µ2
.

8. Example. This example stems from the class discussion of the Central Limit Theorem for

renewal processes. We define

K(t) := E[N(t)2]

and

V (t) := Var[N(t)] = K(t)−M(t)2.

Notice that N(t) = 0 on the event {X1 > t}, while on {X1 ≤ t} we have N(t) = 1+N ′(t−s)
∣∣∣
s=W1

,

using the logic (and the “prime” notation) of parts 5 and 6. Therefore

N(t)2 = 1{X1≤t} + 2 · 1{X1≤t}N
′(t− s)

∣∣∣
s=W1

+ 1{X1≤t}[N
′(t− s)]2

∣∣∣
s=W1

,

and therefore, for 0 < s ≤ t,

E[N(t)2|X1 = s] = 1 + 2E[N ′(t− s)] + E[[N ′(t− s)]2] = 1 + 2M(t− s) +K(t− s).

It now follows from the Law of Total Probability that

K(t) = P[X1 ≤ t] +

∫ t

0

[2M(t− s) +K(t− s)]f(s) ds,
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or (what is the same)

K(t) = F (t) + (2M +K) ∗ f(t).

But M = F +M ∗ f , and so K = F + (2M +K) ∗ f means that K = (2M − F ) +K ∗ f . That is,

K satisfies the renewal equation with h = 2M − F . It follows that

K = M + 2(M ∗m),

and finally that

V = M + 2(M ∗m)−M2.

From this and our knowledge that M(t) = t/µ + (σ2 − µ2)/2µ2 + o(1) when the Xk have finite

variance σ2, we can deduce that

V (t) = t · σ
2

µ3
+ o(t), t→∞.
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