TALK by Y. Suhov
### April 9, 2008

### Branching random walks and diffusions on
hyperbolic spaces: recurrence, transience and Hausdorff
dimension of limiting sets

#### Yuri Suhov (Cambridge)

This talk focuses on asymptotic properties
of geometric branching processes on hyperbolic spaces
and manifolds. (In certain aspects, processes on hyperbolic
spaces are simpler than on Euclidean spaces.)
The first paper in this direction was
by Lalley and Sellke (1997) and dealt with a homogenous
branching diffusion on a hyperbolic (Lobachevsky) plane).
Afterwards, Karpelevich, Pechersky and Suhov (1998) extended
it to general homogeneous branching processes on
hyperbolic spaces of any dimension. Later on, Kelbert and Suhov
(2006, 2007) proceeded to include non-homogeneous branching
processes. One of the main questions here is to calculate
the Hausdorff dimension of the limiting set on the absolute.
I will not assume any preliminary knowledge of hyperbolic
geometry.