ch 5 Estimation

Probability Assume model $Y \sim N(0,1) \rightarrow$ calculate $P\left(|7| 3^{3}\right)=0.997$
Statistic es
observe y data point
$y=4.5$

Data X_{1}, \ldots, x_{n} ind from some cdf F
data
model
case (1) Parametric model \Rightarrow we know F except for possibly a finite-dimensimal parameter θ
F is $\exp (\theta)$
F is $N\left(\mu, \sigma^{2}\right) \rightarrow \theta=\left(\mu, \sigma^{2}\right)$
F is Binomial (p) $\quad \theta=p$
(2) Nonparametric model \Rightarrow can only male qualitative assumptions about F e.g. F has smote density.

Data x_{i}, \ldots, x_{n} ill from F
unknown parameter of interest θ
Def An Estimator (or a statistic) is a function of tee data, a.g. $g\left(X_{1}, \ldots, x_{n}\right)$, that's used to estimate/apgroximate tel unknown parameter θ.

$$
\begin{aligned}
& \hat{\theta}_{n}=g\left(x_{1}, \ldots, x_{n}\right) \\
& \hat{\tau} \\
& \text { r.v. has a distribution }
\end{aligned}
$$

example $\theta=E X_{1}$

$$
\hat{\theta_{n}}=\frac{1}{n} \sum_{1}^{n} x_{i}
$$

Statistics display their variability
usia data across samples.
example X_{1}, \ldots, X_{n} cid from F wite finitevanance.

$$
\theta=E X_{i} .
$$

$$
\begin{aligned}
& \theta=E X_{i} \\
& \hat{\theta}_{n}=\frac{1}{n} \sum_{1}^{n} X_{i} \quad \text { (motivated by LLN } C C L T \text {) }
\end{aligned}
$$

$$
\left.\begin{array}{l}
x_{1}=3 \\
x_{2}=-4 \\
x_{3}=5 \\
\vdots \\
x_{10}=-1
\end{array}\right\} \Rightarrow \hat{\theta}_{10}=-0.57
$$

ex. 2

$$
\begin{aligned}
& \theta=E x_{i}^{2:} \text { Define } y_{i}=x_{i}^{2} \text { so look at } y_{1}, \ldots, y_{n} \quad\left\{\begin{array}{l}
\theta_{n}= \\
\hat{\theta}_{n}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{1}{n} \sum_{1}^{n} x_{i}^{2} \\
\text { ESTIMATION OF MOMENTS }
\end{array}\right.
\end{aligned}
$$

Binomial Distributions

$$
\begin{gathered}
(\theta=\text { Probability of "heads"; } \theta=.25 \text { or } \theta=.75 \text {; } \\
\text { with probabilities depicted by bar lengths) }
\end{gathered}
$$

The maximum likelihood idea: Suppose we know that $\theta=.25$ or $\theta=.75$; but the value of θ is unknown, otherwise. If we observe exactly 4 "heads", and then we are required to choose a value of θ, which choice is reasonable ?

$$
P(\text { \#०f Heads }=4)=\underbrace{\binom{10}{4} \theta^{4}(1-\theta)^{6}}_{L(\theta)}
$$

Choose θ that maximizes $L(\theta)$

$$
\frac{\partial}{\partial \theta} L(\theta)=0 \Rightarrow \ldots \Rightarrow \theta=\frac{4}{10}
$$

MLE
maximum Likelih.o) Estimate of θ

In general you form the ukdihood of x_{1}, \ldots, x_{n} iid frompdf $f_{\theta}($.

$$
L(\theta)=\prod_{i=1}^{n} f_{\theta}\left(X_{i}\right)
$$

View it as a function of θ with X_{i}
Gxed to observed values.

$$
n=1 \quad x_{1} \sim \operatorname{Bin}(n, \theta)
$$

cuntriown
x_{1}, \ldots, x_{10}-iid Bernonlli (θ)
obsened: 0010011100

$$
\begin{aligned}
& P\left(X_{i}=1\right)=\theta \\
& P\left(X_{i}=0\right)=(1-\theta)
\end{aligned}
$$

$$
L(\theta)=(1-\theta)(1-\theta) \theta(1-\theta) \ldots=\theta^{4}(1-\theta)^{6}
$$

or continuous density.

either discrecte

$$
\begin{array}{ll}
\frac{d}{d \theta} L(\theta)=0 \Longleftrightarrow \frac{d}{d \theta} \log L(\theta)=0 \\
L(\theta)=\prod_{i=1}^{n} f_{\theta}\left(x_{i}\right) \quad & \underbrace{\log L(\theta)=\sum_{i=1}^{n} \log f_{\theta}\left(x_{i}\right)}
\end{array}
$$

ex $5.2 .2 \quad x_{1}, \ldots, x_{n} \sim$ ind $f_{\theta}(x)=\frac{1}{\theta} \exp \{-x / \theta\} \quad$ for $x \geqslant 0$
\& $\theta \geqslant 0$

MOM estimator of θ is $\bar{x}=\frac{1}{n} \sum x_{i}$

$$
\begin{aligned}
& L(\theta)=\prod_{i=1}^{n} \frac{1}{\theta} \exp \left\{-\frac{X_{i}}{\theta}\right\}=\frac{1}{\theta^{n}} \exp \left\{-\frac{\sum X_{i}}{\theta}\right\} \\
& \log L(\theta)=-n \log \theta-\frac{\sum X_{i}}{\theta} \\
& \frac{\partial}{\partial \theta} \log L(\theta)=0 \Rightarrow \ldots \hat{\theta}_{M L E}=\frac{1}{n} \sum X_{i}
\end{aligned}
$$

Range of X_{i} does not depend on θ.

