maximize a function $L(\theta)$

$$
\max _{\theta \in[a, b]} L(\theta)=L(b)
$$

Two parameters

x_{i} ~ rid Uniform $(0, \theta)$

$$
\text { Range of } x_{i}=[0, \theta]
$$

$$
\begin{aligned}
& f_{\theta}(x)=\left\{\begin{array}{lll}
1 / \theta & \text { if } 0<x<\theta \\
0 & \text { else } & \underline{x_{i} \leq \theta} \Leftrightarrow \max x_{i} \leq \theta
\end{array}\right. \\
& L(\theta)=\prod_{i=1}^{n} \frac{1}{\theta} 1[0, \theta]\left(x_{i}\right)=\frac{1}{\theta^{n}} 1_{[0, \infty\}}\left(\min x_{i}\right) 1_{(-\infty, \theta]}\left(\max x_{i}\right)
\end{aligned}
$$

Indicator $1_{A}(x)=\left\{\begin{array}{ll}1 & \text { if } x \in A \\ 0 & \text { else }\end{array} \quad\right.$ tee $f_{\theta}(x)=\frac{1}{\theta} 1_{[0, \theta]}(x)$

$$
\prod_{i=1}^{n} 1_{[0, \theta]}\left(x_{i}\right)= \begin{cases}1 & \text { if all of tee } x_{i} \text { are in }[0,0] \\ 0 & \text { else }\end{cases}
$$

$$
= \begin{cases}1 & \text { if } \min x_{i} \geqslant 0 \quad \& \max x_{i} \leqslant \theta \\ 0 & \text { else }\end{cases}
$$

* max of $L(\theta)$ is found at the boundary $\theta=\underbrace{\max X}_{\text {MLE }}$:

Two parameters $\theta=\left(\theta_{1}, \theta_{2}\right)$

$$
L(\theta)=\prod_{1}^{n} f_{\theta}\left(x_{i}\right)
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{\partial}{\partial \theta_{1}} L(\theta)=0 \\
\frac{\partial}{\partial \theta_{2}} L(\theta)=0
\end{array}\right\} \Rightarrow \ldots \quad \text { MLE of } \theta \\
& \theta_{1}=r \\
& \theta_{2}=6^{2} \\
& \text { ex } x_{1}, \ldots, x_{n} \sim n d N(\underbrace{1,,^{2}}_{\theta}) \\
& x_{1}, \ldots, x_{n} \sim n d N(\underbrace{1, \sigma^{2}}_{\theta}) \\
& L\left(p, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2} \frac{(x i-\mu)^{2}}{\sigma^{2}}\right\} \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{1}^{n}\left(x_{i}-r\right)^{2}\right\} \\
& \log L\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \log 2 n-\frac{n}{2} \log 6^{2}-\frac{1}{2} \frac{1}{6^{2}} \sum_{1}^{n}\left(x_{i}-\mu\right)^{2} \\
& \frac{\partial}{\partial \theta_{2}} \log L=0 \Rightarrow-\frac{n}{2} \frac{1}{\sigma^{2}}+\frac{1}{2}\left[\frac{1}{\sigma^{2}}\right]^{2} \sum_{1}^{n}\left(x_{i}-\mu\right)^{2}=0 \Rightarrow-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum\left(x_{i}-\bar{x}\right)^{2}=0 \\
& \Rightarrow \sigma^{2}=\frac{1}{n} \sum\left(x_{i}-x\right)^{2}
\end{aligned}
$$

RECAP: EStimation
MOM based on $L L N$ i.e. that $\frac{1}{n} \sum_{i=1}^{n} x_{i} \longrightarrow E X_{i}$ when x_{1}, \ldots, x_{n} rid F wite finite $E|x|$
can striate $E X_{i}$ by $\frac{1}{n} \sum X_{i}$
$\therefore \underbrace{E} X_{i}^{m}$ by $\frac{1}{n} \sum X_{i}^{m} \quad$ (need finite $E|X|^{m}, m>0$)
order m)
ex. $\quad x_{1}, \ldots, x_{n}$ wild $f_{\theta_{k}}(x)$ unknown parameter
Express θ as a function of μ_{1}, μ_{2}, \ldots i.e. $\theta=g\left(r_{1}, \mu_{2}, \ldots\right)$
plug-in sample moments
ex.5.2.5 $f_{\theta}(x)=\theta x^{\theta-1}, 0 \leq x \leq 1$

$$
\hat{\theta}_{\text {MOM }}=g\left(\hat{r}_{1}, \hat{\mu}_{2}, \ldots\right)
$$

Compute μ_{1}, μ_{2}, \ldots

$$
\begin{aligned}
& r_{1}=E X_{1}=\int_{0}^{1} \theta x^{\theta} d x=\frac{\theta}{\theta+1} \Longrightarrow \text { solve for } \theta=\mu_{1}(\theta+1) \Rightarrow \theta=\frac{\mu_{1}}{1-\mu_{1}}=g\left(\mu_{1}\right) \\
& \qquad \hat{\theta}_{\text {mom }}=g(\underbrace{\frac{1}{n} \sum x_{0}}_{\bar{x}^{\prime \prime}})=\frac{\bar{x}}{1-\bar{x}}
\end{aligned}
$$

ML

$$
L(\theta)=\underbrace{x_{1}, \ldots, x_{n} \sim \operatorname{\sim id} f_{\theta}(x)} \prod_{i=1}^{n} f_{\theta}\left(x_{i}\right)
$$

joint density evaluated at the data $0^{\text {ont }}$ $~\left(x, \ldots, x_{n}\right.$
MLE: Choose θ that maximizes $L(\theta)($ or $\log L(\theta))$
Calculus Set $\frac{\partial}{\partial \theta} \log L(\theta)=0$ \& solve for $\hat{\theta}_{\text {OLE }}$ (but also deck bound aries)
eg: $f_{\theta}(x)=\left\{\begin{array}{ll}g_{\theta}(x) & \text { if } a(\theta) \leqslant x \leqslant b(\theta) \\ 0 & \text { else }\end{array} \Rightarrow f_{\theta}(x)=g_{\theta}(x) 1_{[a(\theta), b(\theta)]}(x)\right.$

$$
\begin{aligned}
& L(\theta)=\left(\prod_{i=1}^{n} g_{0}\left(x_{i}\right)\right)(\underbrace{\prod_{i=1}^{n} 1_{[a(\theta), b(\theta)]}\left(x_{i}\right)}_{11}) \\
& 1_{\left.[a(\theta), \infty)^{\left(\min x_{i}\right)} 1_{(-\infty, b(\theta)]^{\left(\max x_{i}\right)}}\right), ~\left(\min x_{i}\right)} \\
& a(\theta) \leq \min x_{i} \Longleftrightarrow \theta / 3 \leq \min x_{i} \Longleftrightarrow \theta \leq 3 \min X_{i} \\
& \text { e.9. } a(\theta)=\theta / 3 \& b(\theta)=\theta \quad \max X_{i} \leqslant b(\theta)=\theta \Rightarrow \theta \geqslant \max X_{i}
\end{aligned}
$$

