Random Variables

Discrete

- **p.m.f.** \(p_x(k) = P(x = k) \)
 - (probability mass function)
 - a) \(0 \leq p_x(k) \leq 1 \)
 - b) \(\sum p_x(k) = 1 \) for all possible values \(k \)

Continuous

- **p.d.f.** \(f_x(x) \)
 - (probability density function)
 - a) \(f_x(x) \geq 0 \)
 - b) \(\int_{-\infty}^{\infty} f_x(x) dx = 1 \)
 - \(P(a \leq x \leq b) = \int_{a}^{b} f_x(x) dx \)
 - \(P(x = a) = 0 \)

c.d.f. \(F_x(x) = P(x \leq x) \)

(cumulative distribution function/same definition for discrete or continuous)

- **Properties:**
 1. \(0 \leq F_x(x) \leq 1 \)
 2. \(F_x(-\infty) = 0, \quad F_x(+\infty) = 1 \)
 3. \(F_x(x) \) is continuous from the right, i.e. \(F_x(x+\varepsilon) \to F_x(x) \) as \(\varepsilon \downarrow 0 \)
 4. \(F_x(x) \) is non-decreasing

Also: \(P(a < x \leq b) = F_x(b) - F_x(a) \)

Discrete

\(F_x(x) \) is ladder-like with jumps of size \(p_x(k) \) at the possible \(k \)-values

Continuous

\(F_x(x) \) is continuous function and \(f_x(x) = F_x'(x) \)

Graphical Illustration

- **Discrete Graph:**
 - \(F_x(4.5) \)
 - \(p_x(4.5) \)
 - Size of jump \(i \) \(p_x(i) \)

- **Continuous Graph:**
 - \(f_x(x) \) at \(x = 0.5, 1.5, 2 \)
 - \(F_x(x) \) at \(x = 0.5, 1, 1.5, 2 \)
JOINT DISTRIBUTIONS

Definition c.d.f. \(F_{xy}(x,y) = P(X \leq x, Y \leq y) \) and (i.e. \(\uparrow \))

Joint c.d.f. \(<---\) Marginal c.d.f.

\(X \) and \(Y \) are independent \(\iff \) \(F_{xy}(x,y) = F_X(x) \cdot F_Y(y) \) for all \(x, y \).

Discrete R.V.s

<table>
<thead>
<tr>
<th>Joint p.m.f.</th>
<th>(p_{xy}(x,y) = P(X=x, Y=y))</th>
</tr>
</thead>
</table>

Continuous R.V.s

|Joint p.d.f.| \(f_{xy}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{xy}(x,y)\) |

Defining Property of Joint P.D.F.:

\[P(\{x\} | \{y\} \in A) = \iint f_{xy}(x,y) \, dx \, dy \]

where \(A \) is a subset of \(\mathbb{R}^2 \).

Marginal (i.e. Individual) P.M.F.

Marginal (i.e. individual) P.D.F.

<table>
<thead>
<tr>
<th>P.M.F.</th>
<th>"marginal" (i.e. individual)</th>
</tr>
</thead>
</table>

\[f_X(x) = \sum_y p_{xy}(x,y) \]

\[f_Y(y) = \sum_x p_{xy}(x,y) \]

Conditional P.M.F.

<table>
<thead>
<tr>
<th>Conditional p.m.f.</th>
<th>(p_{xy}(x,y))</th>
</tr>
</thead>
</table>

\[P_{xy}(x|y) = \frac{p_{xy}(x,y)}{P_y(y)} \]

\[P_{yx}(y|x) = \frac{p_{xy}(x,y)}{P_x(x)} \]

\(X \) and \(Y \) are independent \(\iff \) for all \(x, y \)

| Joint p.m.f. | \(p_{xy}(x,y) = p_x(x) \cdot p_y(y) \) |

Marginal (i.e. Individual)

\[f_X(x) \]

\[f_Y(y) \]

\[f_{xy}(x,y) = f_X(x) \cdot f_Y(y) \] for all \(x, y \).

| Joint p.d.f. | \(f_{xy}(x,y) = f_X(x) \cdot f_Y(y) \) |

Marginal (i.e. Individual)
Properties of Expectation and Variance

Let X, Y be any two r.v.'s and a, b be any two real numbers.

1. $E(aX + bY) = aEX + bEY$
2a. $E(aX + b) = aEX + b$
2b. $\text{Var}(aX + b) = a^2 \text{Var}(X)$

If X, Y are independent r.v.'s then we also have:

3a. $E(XY) = (EX)(EY)$
3b. $\text{Var}(aX + bY) = a^2 \text{Var}(X) + b^2 \text{Var}(Y)$