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-prium) If 8¢ . : : m, the
- Hardy- Weinberg Equilt? "in a population with gnencies (1 o,
EXAMPLE A. (Hard) A4a. and ad ﬂﬂ"v: Hard},_“feinberg Law. In a samp]e from th{;

. T ,l._L
renolypes - g * e
-‘E';[ i ;p;}. and 07, accardmg;ﬂKﬂng
Chinese population of HTEI N
following frequencies, wher

in 193?, blﬂﬂd typt?g occurred 23
are erythrocyte antigens:

_a Blood Type ’
' . Total
—— . _‘UN JV
[, & w | s
AL

Frequen cy
of 6. For example, if we equate g2
g. Intuitively, however, it seep
n the other cells. If we Jet Xerty:

ble estimales
3 as an estimate n{ *
of the information1

There are several possi
187/1029, we obtain 426
this procedure ignores some

and X, denote the counts v ‘
of @ is (you should check this):

ts in the three €

2 ——
e G os20( — 0) 1 1o,
i=1

S log X! + (2X; + Xa)log(l — 0)

j=]

— Iﬂg n_’ —_—

+ (2X, + X,)logd + X;log2

[We have not explicitly incorporated the c?onstraint thatathe cell Probabilitjes
sum to 1 since the functional form of p;(f) is such that i pi0) = 1] Setting

the derivative equal to zero, we have

2X, + X, 2X; + X5

= 0
1 -0 7}

Solving this, we obtain the mle:

i 2X, + X,
e SO X
_2X; + X,
2 2n
2 x 187 + 500
PiDAA1029:5: o7 it/

b

second, third, or fourth decimal place? Do the data in the table actually fit the

Hardy-Weinberg Law? We will addre jons i
» Ss these ue - .
chapter and in Chiapteio) questions 1n later sections of this

h the

With
S that

ells and let n = 1029, the log er“hﬂn‘z

intervals for the population nar. e estim
distribution of the maximum Gt . V€ Cannot

encountered a similar . ‘ .
sampling distribution UF:‘]?:l?m N chapter 7 whezpllmlyi. We have already
limit theorem to approxim HE"“}:‘P]E Mean. In that situ;:ric wished to know the
; al€ the sampl =105y On, we used the centr:
develop some large sample theory to HI;)I;)ng distribution of X in this qcctinnt::i
ro ’ : ,

aximum likeli sgfie XImat TR e
s oo cstimates by Normal distribill-hc sampling distributions of
10ns,

[ this large sam

will simply state some resy]ts and gjve Very
ro

case of an ii.d. sample and 2 gne_1. ugh, heuristic
ne-dimension. arguments for the
Theorems A and B below m. . onal parameter. [TH
f be f : w ey De skipped without ]og : ; B e lor
proois may be lound in Cramer (1946).] S$ of continuity, Rigorous

For an 1.1.d. sample of sjze n, the log likelihood i
1S

1(9} — ,-; lﬂgf{x”g)

We denote the true value of 9 by 6,. It can be
conditions @ is a consistent estimate of
as n approaches infinity, ;

S ﬁshnwn that under reasonable
» that s, 6 converges to by In probability

THEOREM A. Under

: appropriate smo R _
consistent. othness conditions on f, the mle is

Proof. The following is merely a sketch of the proof. Consider maximizing
: (6
~H0) = - ) log f(X;|6)

As n tends to infinity, the law of large numbers implies that

1
51(9) ~ Elog f(X|0)

= _[logf(xlﬂ)f(x%)dx

It is thus plausible that for large n, the 0 that maximize I(0) should be close to
the 6 that maximize E log f(X|0). (An involved argument is necessary to establish
this.) To maximize E log f(X|0), we consider its derivative:
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£7ERS AND FITTING 0 0 J[G log f(x16
N OF PARAME = A a0 25J\x10) | 1(:
242 ;'H.U'TIR”*”” l-'.Sﬂp.HTlﬂ 0 i!(tfﬁ) | als, df) 1f{"'219}d‘¢
7 fi-—-é—)-*f(xw{})d-’f '[[ 0° log f
el xl00)dx = | “f(x| = || z5z1l08 xlﬂ)] (x]6 G )
;;Jlﬂgffx!ﬁ}ﬂ 0 002 f(x|0)dx + Eglugf(x19]] f(x0)dx
| | omes om this, the desired result follows
(£ = B, this equation bec ﬂ : . Fr WS e
9 f(;;[ﬂﬂ]dx = Eg( ot

The large sample distribution of 3 maximum like
| mately nz;:;]all:llél; 2??;1 0, and var'iance 1/nI(6,). Since this is merely a limiting
. nary poin! and hopefully a maximum. Note th,, result, W Pl € sample size tends to infinity, we say that the mle is
Ltk jon and integration and that the assumptigp of asymptoticaily unbiase ar}cl refer to the variance of the limiting normal distribu-
ifferentiat!  gh to s tify this. - tion as the asymptotic variance of the mle.
ge

Egﬁf{xfﬂﬂ}dx =50 lihood estimate is approxi-

which shows that Hﬂd :
we have interchange

on
smoothness on f must be str

. B.
ve a useful intermediate result. THEOREM B. Under smoothness co

: nditions on f, the probabilitv distribu-
tion of /nl(6y)(0 — b,) tends to a f probability distribu

We will now derl standard normal distribution.

L EMMA A. Define /(6) by Proof. The followingis merely a sketch of the proof: the details of the argument

p are beyond the scope of this book. From a Taylor Series expansion,

IZ

0=10)~I'(8,) + (§ — 0,)!"(6,)

Under appropriate smoothness conditions on f; I(6) may also be expressed as

0=
,_az 0
b S ——lﬂgf(Xlﬁ):, '
1(6) 362 A —n~"21'(6,)
n'“(0 — 6,)) x —
n 11”{9(}]

Proof. First, we observe that since [f(x|0)dx = 1,

First, we consider the numerator of this last expression. Its expectation 1s

;
bt =0 i
= f f(x|6)dx

- 5
E[n21(B)] = n' ¥ E| - log f(X;[6,)
i=1 | 1
Combining this with the identity s
0 d
E’iﬁf (x]0) = [@ log f(x |9):’f (x10) as in Theorem A. Its variance is
P Fh 2k
we have Var[n 21'(6,)] = = Y E Eﬁlogﬂxiw“)
i=1 5, =
&7 J(x|0)dx = ilﬂ::gf(xlf}i) f(x|0)dx = 1(%)
3l7) a0

: . : Next, we consider the denominator:
where we have interchanged differentiation and integration (some assumptions

must be made in order to do this). Taking second derivatives of the expressions g

p.
. |
Just above, we have _1"(8,) = = 2, v log f(x;]6o)
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nverges to

n'3(0 — B ® 1(65)

Therefore, .
E[n'?(0 — 6,)] = 0
thermore,
Fur ‘ : 16)
Var[n'?(0 — 0o)] = 1%(6,)
1
— 1(6)
and thus

Var(E:‘ — th) = m

The central limit theorem may be applied to I'(6,), which is a sum of i.id,
random variables:

0

I'(6p) = ‘ZI 30, log /(X;0) 0

Another interpretation of the result of Theorem B is as follows. For an 1.i.d.

sample, the maximum likelihood estimate is the maximizer of the log likelihood
function,

19) = ;Z log f(X,16)

The asymptotic variance is

] l
nl(6,) ~  EI"(6,)
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which may be interpreted as ap gy

this radius of curvature is smal].
asymptotic variance is small
A corresponding result can be Proved for th i

vector of maximum likelihood est; € multidimensional case. The
The mean of the asymptotic distributine : cally normally distributed.
the elements ﬂfﬁthe vector of estimates haye Variance r of true parameters, and
the corresponding elements of the matrix (1/n)I Y(p €s 1;1(1 covariances given ib'l"
the ij component o)s Where I()) is a matrix with

0 0 :
E[ log f(X1|0) log (X0 s

- . - . } L 1 ’

o0, oo, : ,r‘u,r“ffjmg’“h Hm]

cra e radine
he t:!*:lirrrid”jhl?j.Uf curvature of 1(0) at 6,. When
S mlm”":l}’ well resolved and the

The following sections will apply these results in several examples

8.5.3 Confidence Intervals for Maximum Likelihood Estimates

In chapter 7, confidence ifillﬂ'!"'-fais for the population mean i were introduced.

Recall that the cmnﬁdencc interval for y was a random interval that contained T

with the some specified probability. In the current context. we are interested in
estimating the parameter 6 of a probability distribution. We will dey elop confi-
dence intervals for 6 based on #; these intervals serve essentially the same function
as they did in chapter 7 in that they express in a fairly direct way the degree of
uncertainty in the estimate 6. '

In some cases, the exact sampling distribution of a maximum likelihood
estimate can be obtained, allowing the derivation of exact confidence intervals:
however, this 1s typically not possible. For moderate to large sample sizes,
confidence intervals based on the normal approximation to the sampling distri-
bution developed 1n Section 8.5.2 may be used. In that section, it was shown that
the asymptotic variance of a maximum likelihood estimate depends on I(H,). As
it was given there, this result is difficult to use, since 6, is not known. The obvious
thing to try 1s to substitute A for f, and use I(0). In fact, it can be shown that the

e —

limiting distribution of \/nI(8)(# — 6,)is also the standard normal distribution,
so this procedure can be justified. ‘

From essentially the same argument that was used to form approximate
confidence intervals for the population mean (see Section 7.3.3), it follows that
an approximate 100(1 — )%, confidence interval for 0, 18

Denoting the estimated standard deviation, or standard error, of by s3, we can
write this confidence interval as

]

0 + z(x/2)sg

—
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sampling dfstl'lbllt]ﬂél ﬂct.conﬁdence intervals for A may be obtained by

which is unknowi. xla)les re available (Pearson and _Hartley, 1966).

this fact, and special ta - dence intervals may be derived as follows. First y,

];M lg: j:f:}lsj c']?here are two ways Lo do this. We may use the defin;j Hok
need to -

; 2
a— — A
1) = E[@l log f(x| )]

Since the sum of independen
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Thus, an approximate 100(1 — %)% confidence Interval for 4 i
is

S | 2

Note that the asymptotic variance 1S in
confidence interval, however, is only ap
tion of X 1s only approximately normal

As a concrete example, let us return to
asbestos fibers on filters, discussed earlier. In
J = 24.9. The estimated standard error of }

fact’ the exact variance in this case. The
Proximate, since the sampling distribu-

the study that involved counting

Example A in Section 8.4, we found
18 thus (n = 23)

)
Sy = \ﬁ = 1.04
n

An approximate 959 confidence interval for 1 is

]

A+ 1.96s;

or (22.9, 26.9). This interval gives a good indication of the uncertainty inherent
in the determination of the average asbestos level using the model that the counts
in the grid squares are independent Poisson random variables.

EXAMPLE B. (Normal Distribution) The mle’s of x and ¢? are

=X
&2=li(xi_f)2
ni=1

Exact theory may be used; from Section 6.3,

X -
S

tn-l

- where t,_, denotes the t distribution with n — 1 degrees of freedom and

s < . X5 ,
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5 Efficiency
1.0
0._? 097
p) 989
3 975
4 953
5 931
6 878
7 817
8 et
9 582
95 464

tends to 0. Thus, the mle is not much better thy,,

tends to 1, the efficiency : :
Hxien lose to 0 but does increasingly better as

the method of moments estimate forac

« tends to 1. : *
hat we have used the asymptotic variance of the m}e

It must be kept in mind t * . . :
so we have actually calculated an asymptotic relative efficiency. To gain more

precise information for a given sample size, a simulatic::} of the sampling distrib,-
tion of the mle could be conducted. This might be especially interesting for o = |
a case for which the formula for the asymptotic variance given above does not
appear to make much sense. With a simulation study, the behavior of the biasg
as n and a vary could be analyzed (we showed that the mle is asymptotically
unbiased, but there may be bias for a finite sample size), and the actual distriby-

tion could be compared to the approximating normal. 0

In searching for an optimal estimate, we might ask whether there is a lower
bound for the MSE of any estimate. If such a lower bound existed, it would
function as a benchmark against which estimates could be compared. If an
estimate achieved this lower bound, we would know that it could not be improved

_ ~upon. In the case in which the estimate is unbiased, the Cramer—Rao Inequality
- provides such a lower bound. We now state and prove the Cramer-Rao

e

L e IHEORFM A (Cramer-Rao Inequality) Let X, ..., X, be 1i.d. with density
- lunction f(x]0). Let T = t(X,,..., X,) be an unbiased estimate of 6. Then, under

5 LRI N LR e {}_.’ oy
ST TR S T A
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~ Theorem A gives a lower bound on the
~ unbiased estimate whose variancea
- Since the asymptotic variance of a
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In Section 8.5.2, we showed that E(Z) = 0, Since : :
and T is less than or equal to 1 in absolute value SR IR

Cov*(Z,T) < Var(Z) Var(T)

It was also shown in Section 8.5.2 that

3 5
Var [—a—ﬂlogf(xlﬂ) = 1(0)

Therefore,
Var(Z) = nI(6)

The proof will be completed by showing that Cov(Z,T) = 1. Since Z has mean
0,

Cov(Z,T) = E(ZT)

0
|, 50|
=J.*"J~t(xl""’x")l_rzi 7x10) Hf(leﬂ)dxj

Noting that

0
Eﬁﬂxile) 3

a n
i; 710 Ef(leﬂ) = 55‘[__]1f(xa|9)

n

we rewrite the expression for the covariance of Z and T as

COV(Z: T) e j.'“ jt(xli---:xn)% ﬁf(xilﬁ)dxi

i=1

j jt(xl,...,xn)ljlf(xllﬂ)dx;

E(T) = %(9) =1

nterchange of differentiation and integra-

- the inequality. [Note thei _ -
which proves the inequality. [N thness assumptions on f(x|6).] ]

tion that must be justified by the smoo

variance of any unbiased estimate. An
this lower bound is said to be efficient.

hieves
: likelihood estimate is equal to the

maximum

i“. B
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