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[Y ′1, Y
′
2] denote a decomposition into two subvectors. Then the mean vector and

covariance matrix can be partitioned conformably:

µ =

[
µ

1
µ

2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

So Σ21 is the covariance between Y 2 and Y 1. As already known, both subvectors
are multivariate Gaussian, i.e., :

Y 1 ∼ N
(
µ

1
,Σ11

)
Y 2 ∼ N

(
µ

2
,Σ22

)
.

Then using the Schur decomposition (see Proposition 6.5.3 for further details) of 
Σ, and assuming that Σ22 is invertible, we obtain the following result (via 
factorization of the joint pdf of Y 1 and Y 2) on the conditional distribution of Y 1 
given Y 2 = y

2
, namely:

Y 1|{Y 2 = y
2
} ∼ N

(
µ

1|2,Σ1|2

)
(2.1.4)

µ
1|2 = µ

1
+ Σ12 Σ−1

22

(
y

2
− µ

2

)
(2.1.5)

Σ1|2 = Σ11 − Σ12 Σ−1
22 Σ21. (2.1.6)

Note that: (i) the independence of Y 1 and Y 2 is equivalent to Σ12 being a zero
matrix, in which case the conditional distribution of Y 1 given Y 2 = y

2
is equal to

the unconditional distribution of Y 1, i.e., uncorrelatedness implies independence
in the case of joint (multivariate) normality; and (ii) the conditional expectation
of Y 1 given Y 2 = y

2
is linear/affine as a function of the given quantity y

2
.

Remark 2.1.15. Decorrelation by Orthogonal Transformation Another
application of Facts 2.1.7, 2.1.8 and 2.1.12 is to decorrelate random vectors.
Suppose X ∼ N (0,Σ) with Σ invertible; applying Fact 2.1.7, we obtain an
orthogonal matrix P such that Y = P ′X has covariance matrix Λ, a diagonal
matrix; see also Exercise 2.6. Hence the components of Y are independent. If X
is non-normal, but still has covariance matrix Σ, then Y will have uncorrelated
components (but they may be dependent). Furthermore, if we let Z = Λ−1/2 Y
then the covariance matrix of Z is 1n. If X is Gaussian, then so is Z, and the
component of Z are i.i.d. N (0, 1).

There is a converse to Fact 2.1.12, in the sense that the affine property
characterizes the Gaussian distribution. To discuss this result, we need the
concept of a characteristic function discussed more fully in Definition C.3.5 of
Appendix C.

Proposition 2.1.16. (Cramér-Wold device)

X ∼ N (µ,Σ) ⇔ a′X is univariate normal for any a ∈ Rn \ {0}.
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the sample mean of the time series over each such window (see Paradigm 1.3.1).
Hence, estimator (3.1.2) is sometimes called a moving average.1

Since µt changes slowly with t, we can write µt+s ≈ µt if |s| is small. Hence,

E[µ̂t] =
1

2m+ 1

m∑
s=−m

E[Xt+s] ≈ µt when m is small, (3.1.3)

i.e., µ̂t is approximately unbiased as an estimator of µt. The weights in equa-
tion (3.1.2) are just the reciprocals of 2m + 1, but they can be made more
sophisticated through the device of a kernel.

Definition 3.1.2. A kernel is a weighting function K(t) that is symmetric and
attains its maximum value at t = 0. A kernel estimator of the nonparametric
trend µt in (3.1.1) is a weighted average of the data, with weights determined
by a kernel; the estimator is defined as

µ̂t =

∑n
s=1K((s− t)/m)Xs∑n
s=1K((s− t)/m)

. (3.1.4)

The parameter m is called the bandwidth. Here n denotes the sample size.

The denominator in (3.1.4) ensures that the set of weights in the estimator 
always add up to unity – this is important in order to claim that estimator µ̂t 
has negligible bias by analogy to equation (3.1.3).

Remark 3.1.3. Rectangular Kernel Recall Definition A.3.2 for the indicator 
of a set. Utilizing the kernel K(x) = 1[−1,1](x) in (3.1.4) yields the simple 
(unweighted) moving average estimator (3.1.2); this is called the rectangular or 
“box” kernel. The choice of the kernel K determines the statistical properties 
of the kernel estimator, such as bias and variance; however, bandwidth choice 
is often more crucial.

Remark 3.1.4. Role of Bandwidth The role of the bandwidth m in (3.1.4) 
is similar to that of m in (3.1.2): it defines a neighborhood of time values near 
to the given time t of interest. Large bandwidth entails a large neighborhood 
and more smoothing – local features are suppressed. Small bandwidth entails 
a small neighborhood, so that local features are emphasized. Especially in the 
rectangular kernel case where m is just the (half)width of the moving window, 
it is apparent that less averaging is done when m is small. If m is too small, 
undersmoothing occurs and is often visible in plotting µ̂t as a function of t; e.g., 
in the extreme case that m = 0, we simply have µ̂t = Xt. If m is large, there is 
more averaging but if m is too large, oversmoothing occurs; in the largest case 
possible, µ̂t becomes the sample mean which is flat/constant as a function of t. 
A good bandwidth choice strives for the “sweet spot” between undersmoothing 
and oversmoothing. There is a lot of literature on optimal bandwidth choice 
but the usefulness of looking at plots of µ̂t as a function of t can not be over-
emphasized.

1This is a different notion from the Moving Average process defined in Remark 2.5.7.
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Fact 6.1.8. Further Properties of the Spectral Density Because the
autocovariance sequence is even, i.e., γ(−k) = γ(k), and using the fact that
e−iλk + eiλk = 2 cos(λk), it follows that

f(λ) =

∞∑
k=−∞

γ(k) e−iλk = γ(0) + 2

∞∑
k=1

γ(k) cos(λk), (6.1.7)

which implies that the spectral density is always real-valued, and an even function
of λ. A much less obvious fact – proved in Corollary 6.4.10 in what follows – is
that the spectral density of a stationary process is non-negative everywhere, i.e.,
f(λ) ≥ 0 for all λ ∈ [−π, π]; this is due to the non-negative definite property of
the autocovariance sequence.

The action of a filter on a time series has an elegant representation in terms
of spectral densities, as shown in the following corollary of Theorem 5.6.6.

Corollary 6.1.9. Suppose that (5.6.2) holds, i.e., Yt =
∑∞
j=−∞ ψj Xt−j, and

let fx and fy be the respective spectral densities of the stationary input series
{Xt} and the output series {Yt}. Then the following equation gives the relation-
ship between these two spectral densities, in terms of the transfer function:

fy(λ) = |ψ(e−iλ)|2 fx(λ) (6.1.8)

for all λ ∈ [−π, π], where ψ(B) =
∑∞
j=−∞ ψjB

j.

Proof of Corollary 6.1.9. Replace z by e−iλ and z−1 by eiλ in Theorem
5.6.6, and note that ψ(eiλ) = ψ(e−iλ). 2

Fact 6.1.10. Frequency Response Function Evaluating the transfer func-
tion of a filter ψ(B) at z = e−iλ, and viewing it as a (complex-valued) function
of λ ∈ [−π, π] results in what is known as the frequency response function of the
filter. The absolute value |ψ(e−iλ)| of the frequency response function is called

the gain function, and its square |ψ(e−iλ)|2 is called the squared gain function.

To compute the autocovariance of the output Yt = ψ(B)Xt, we can de-

termine the Fourier coefficients of the squared gain function |ψ(e−iλ)|2, and
convolve these with the acvf of {Xt}; this is an application of the convolution
formula, given below (see Exercise 6.2 for the proof).

Proposition 6.1.11. Convolution Formula Consider two functions f(λ)
and g(λ) belonging to L2[−π, π]; expand them in Fourier series to obtain

f(λ) =

∞∑
k=−∞

〈f〉k e
−iλk and g(λ) =

∞∑
k=−∞

〈g〉k e
−iλk. (6.1.9)

The Fourier coefficients of the product f(λ)g(λ) are given by the discrete con-
volution of the Fourier coefficients of f(λ) and g(λ) respectively, i.e.,

〈fg〉k =

∞∑
k=−∞

〈f〉h−k〈g〉k. (6.1.10)



114 CHAPTER 4. THE GEOMETRY OF RANDOM VARIABLES

Pairing completeness with the notion of inner product yields a so-called
Hilbert space.

Definition 4.3.4. An inner product space that is complete is called a Hilbert
space.

Fact 4.3.5. Inner Product Space Completeness An inner product space
is complete if and only if it is closed.

Example 4.3.6. A Hilbert space on R Consider the vector space R with
inner product given by the scalar product, and let xn = 1/n for n ≥ 1 be a
sequence; this is clearly a Cauchy sequence that converges to 0, which lies in R.
It can be shown that Euclidean vector spaces are complete.

Example 4.3.7. Not a Hilbert Space Consider the vector space (0, 1] with
scalar product for inner product. Then, the sequence xn = 1/n is Cauchy; it
tends to 0 6∈ (0, 1], so the sequence does not converge to an element of the
space. Hence (0, 1] is not complete, and is not a Hilbert space. Note that this
is consistent with Fact 4.3.5, since (0, 1] is not closed.

Fact 4.3.8. Common Hilbert spaces The spaces Rn, `2, and L2 (see Ex-
ample 4.1.9 and Definition 4.2.1) with their associated inner products, are all
Hilbert spaces.

We now list the main properties of a Hilbert space H with an inner product
denoted by 〈x, y〉, and norm ‖x‖ =

√
〈x, x〉 for x, y ∈ H.

Theorem 4.3.9. Let H be a Hilbert space, and let x, y, z ∈ H and a ∈ R. Then:

1. 〈x, y〉 = 〈y, x〉 (symmetry)

2. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (linearity in the first argument)

3. 〈a x, z〉 = a 〈x, z〉 (linearity in the first argument)

4. ‖x‖ ≥ 0 with equality1 if and only if x = 0.

5. Cauchy-Schwarz inequality: |〈x, y〉| ≤ ‖x‖ · ‖y‖ with equality if x = a y+ b
for some a ∈ R and b ∈ H.

6. Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖

7. ‖ax‖ = |a| ‖x‖

8. Parallelogram law: ‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2

9. Continuity of the inner product: if ‖xn − x‖ → 0 and ‖y
n
− y‖ → 0 as

n→∞, then ‖xn‖ → ‖x‖ and 〈xn, yn〉 → 〈x, y〉 as n→∞.

10. Completeness: if xn is Cauchy, then there exists some x ∈ H such that
xn → x in norm.

1Caveat: in L2(Ω,P,F) this is weakened to x = 0 with probability one.
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