$\left[\underline{Y}_{1}^{\prime}, \underline{Y}_{2}^{\prime}\right]$ denote a decomposition into two subvectors. Then the mean vector and covariance matrix can be partitioned conformably:

$$
\underline{\mu}=\left[\begin{array}{c}
\underline{\mu}_{1} \\
\underline{\mu}_{2}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right] .
$$

So Σ_{21} is the covariance between \underline{Y}_{2} and \underline{Y}_{1}. As already known, both subvectors are multivariate Gaussian, i.e., :

$$
\underline{Y}_{1} \sim \mathcal{N}\left(\underline{\mu}_{1}, \Sigma_{11}\right) \quad \underline{Y}_{2} \sim \mathcal{N}\left(\underline{\mu}_{2}, \Sigma_{22}\right)
$$

Then using the Schur decomposition (see Proposition 6.5.3 for further details) of Σ, and assuming that Σ_{22} is invertible, we obtain the following result (via factorization of the joint pdf of \underline{Y}_{1} and \underline{Y}_{2}) on the conditional distribution of \underline{Y}_{1} given $\underline{Y}_{2}=y_{2}$, namely:

$$
\begin{align*}
\underline{Y}_{1} \mid\left\{\underline{Y}_{2}=\underline{y}_{2}\right\} & \sim \mathcal{N}\left(\underline{\mu}_{1 \mid 2}, \Sigma_{1 \mid 2}\right) \tag{2.1.4}\\
\underline{\mu}_{1 \mid 2} & =\underline{\mu}_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\underline{y}_{2}-\underline{\mu}_{2}\right) \tag{2.1.5}\\
\Sigma_{1 \mid 2} & =\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \tag{2.1.6}
\end{align*}
$$

Note that: (i) the independence of \underline{Y}_{1} and \underline{Y}_{2} is equivalent to Σ_{12} being a zero matrix, in which case the conditional distribution of \underline{Y}_{1} given $\underline{Y}_{2}=\underline{y}_{2}$ is equal to the unconditional distribution of \underline{Y}_{1}, i.e., uncorrelatedness implies independence in the case of joint (multivariate) normality; and (ii) the conditional expectation of \underline{Y}_{1} given $\underline{Y}_{2}=\underline{y}_{2}$ is linear/affine as a function of the given quantity \underline{y}_{2}.

Remark 2.1.15. Decorrelation by Orthogonal Transformation Another application of Facts 2.1.7, 2.1.8 and 2.1.12 is to decorrelate random vectors. Suppose $\underline{X} \sim \mathcal{N}(\underline{0}, \Sigma)$ with Σ invertible; applying Fact 2.1.7, we obtain an orthogonal matrix P such that $\underline{Y}=P^{\prime} \underline{X}$ has covariance matrix Λ, a diagonal matrix; see also Exercise 2.6. Hence the components of \underline{Y} are independent. If \underline{X} is non-normal, but still has covariance matrix Σ, then \underline{Y} will have uncorrelated components (but they may be dependent). Furthermore, if we let $\underline{Z}=\Lambda^{-1 / 2} \underline{Y}$ then the covariance matrix of \underline{Z} is 1_{n}. If \underline{X} is Gaussian, then so is \underline{Z}, and the component of \underline{Z} are i.i.d. $\mathcal{N}(0,1)$.

There is a converse to Fact 2.1.12, in the sense that the affine property characterizes the Gaussian distribution. To discuss this result, we need the concept of a characteristic function discussed more fully in Definition C.3.5 of Appendix C.

Proposition 2.1.16. (Cramér-Wold device)

$$
\underline{X} \sim \mathcal{N}(\underline{\mu}, \Sigma) \Leftrightarrow \underline{a}^{\prime} \underline{X} \text { is univariate normal for any } \underline{a} \in \mathbb{R}^{n} \backslash\{0\} .
$$

the sample mean of the time series over each such window (see Paradigm 1.3.1). Hence, estimator (3.1.2) is sometimes called a moving average. ${ }^{1}$

Since μ_{t} changes slowly with t, we can write $\mu_{t+s} \approx \mu_{t}$ if $|s|$ is small. Hence,

$$
\begin{equation*}
\mathbb{E}\left[\widehat{\mu}_{t}\right]=\frac{1}{2 m+1} \sum_{s=-m}^{m} \mathbb{E}\left[X_{t+s}\right] \approx \mu_{t} \text { when } m \text { is small, } \tag{3.1.3}
\end{equation*}
$$

i.e., $\widehat{\mu}_{t}$ is approximately unbiased as an estimator of μ_{t}. The weights in equation (3.1.2) are just the reciprocals of $2 m+1$, but they can be made more sophisticated through the device of a kernel.

Definition 3.1.2. A kernel is a weighting function $K(t)$ that is symmetric and attains its maximum value at $t=0$. A kernel estimator of the nonparametric trend μ_{t} in (3.1.1) is a weighted average of the data, with weights determined by a kernel; the estimator is defined as

$$
\begin{equation*}
\widehat{\mu}_{t}=\frac{\sum_{s=1}^{n} K((s-t) / m) X_{s}}{\sum_{s=1}^{n} K((s-t) / m)} \tag{3.1.4}
\end{equation*}
$$

The parameter m is called the bandwidth. Here \boldsymbol{n} denotes the sample size.
The denominator in (3.1.4) ensures that the set of weights in the estimator always add up to unity - this is important in order to claim that estimator $\widehat{\mu}_{t}$ has negligible bias by analogy to equation (3.1.3).

Remark 3.1.3. Rectangular Kernel Recall Definition A.3.2 for the indicator of a set. Utilizing the kernel $K(x)=\mathbf{1}_{[-1,1]}(x)$ in (3.1.4) yields the simple (unweighted) moving average estimator (3.1.2); this is called the rectangular or "box" kernel. The choice of the kernel K determines the statistical properties of the kernel estimator, such as bias and variance; however, bandwidth choice is often more crucial.

Remark 3.1.4. Role of Bandwidth The role of the bandwidth m in (3.1.4) is similar to that of m in (3.1.2): it defines a neighborhood of time values near to the given time t of interest. Large bandwidth entails a large neighborhood and more smoothing - local features are suppressed. Small bandwidth entails a small neighborhood, so that local features are emphasized. Especially in the rectangular kernel case where m is just the (half)width of the moving window, it is apparent that less averaging is done when m is small. If m is too small, undersmoothing occurs and is often visible in plotting $\widehat{\mu}_{t}$ as a function of t; e.g., in the extreme case that $m=0$, we simply have $\widehat{\mu}_{t}=X_{t}$. If m is large, there is more averaging but if m is too large, oversmoothing occurs; in the largest case possible, $\widehat{\mu}_{t}$ becomes the sample mean which is flat/constant as a function of t. A good bandwidth choice strives for the "sweet spot" between undersmoothing and oversmoothing. There is a lot of literature on optimal bandwidth choice but the usefulness of looking at plots of $\widehat{\mu}_{t}$ as a function of t can not be overemphasized.

[^0]Fact 6.1.8. Further Properties of the Spectral Density Because the autocovariance sequence is even, i.e., $\gamma(-k)=\gamma(k)$, and using the fact that $e^{-i \lambda k}+e^{i \lambda k}=2 \cos (\lambda k)$, it follows that

$$
\begin{equation*}
f(\lambda)=\sum_{k=-\infty}^{\infty} \gamma(k) e^{-i \lambda k}=\gamma(0)+2 \sum_{k=1}^{\infty} \gamma(k) \cos (\lambda k) \tag{6.1.7}
\end{equation*}
$$

which implies that the spectral density is always real-valued, and an even function of λ. A much less obvious fact - proved in Corollary 6.4.10 in what follows - is that the spectral density of a stationary process is non-negative everywhere, i.e., $f(\lambda) \geq 0$ for all $\lambda \in[-\pi, \pi]$; this is due to the non-negative definite property of the autocovariance sequence.

The action of a filter on a time series has an elegant representation in terms of spectral densities, as shown in the following corollary of Theorem 5.6.6.
Corollary 6.1.9. Suppose that (5.6.2) holds, i.e., $Y_{t}=\sum_{j=-\infty}^{\infty} \psi_{j} X_{t-j}$, and let f_{x} and f_{y} be the respective spectral densities of the stationary input series $\left\{X_{t}\right\}$ and the output series $\left\{Y_{t}\right\}$. Then the following equation gives the relationship between these two spectral densities, in terms of the transfer function:

$$
\begin{equation*}
f_{y}(\lambda)=\left|\psi\left(e^{-i \lambda}\right)\right|^{2} f_{x}(\lambda) \tag{6.1.8}
\end{equation*}
$$

for all $\lambda \in[-\pi, \pi]$, where $\psi(B)=\sum_{j=-\infty}^{\infty} \psi_{j} B^{j}$.
Proof of Corollary 6.1.9. Replace z by $e^{-i \lambda}$ and z^{-1} by $e^{i \lambda}$ in Theorem 5.6.6, and note that $\psi\left(e^{i \lambda}\right)=\overline{\psi\left(e^{-i \lambda}\right)}$.

Fact 6.1.10. Frequency Response Function Evaluating the transfer function of a filter $\psi(B)$ at $z=e^{-i \lambda}$, and viewing it as a (complex-valued) function of $\lambda \in[-\pi, \pi]$ results in what is known as the frequency response function of the filter. The absolute value $\left|\psi\left(e^{-i \lambda}\right)\right|$ of the frequency response function is called the gain function, and its square $\left|\psi\left(e^{-i \lambda}\right)\right|^{2}$ is called the squared gain function.

To compute the autocovariance of the output $Y_{t}=\psi(B) X_{t}$, we can determine the Fourier coefficients of the squared gain function $\left|\psi\left(e^{-i \lambda}\right)\right|^{2}$, and convolve these with the acvf of $\left\{X_{t}\right\}$; this is an application of the convolution formula, given below (see Exercise 6.2 for the proof).
Proposition 6.1.11. Convolution Formula Consider two functions $f(\lambda)$ and $g(\lambda)$ belonging to $\mathbb{L}_{2}[-\pi, \pi]$; expand them in Fourier series to obtain

$$
\begin{equation*}
f(\lambda)=\sum_{k=-\infty}^{\infty}\langle f\rangle_{k} e^{-i \lambda k} \text { and } g(\lambda)=\sum_{k=-\infty}^{\infty}\langle g\rangle_{k} e^{-i \lambda k} \tag{6.1.9}
\end{equation*}
$$

The Fourier coefficients of the product $f(\lambda) g(\lambda)$ are given by the discrete convolution of the Fourier coefficients of $f(\lambda)$ and $g(\lambda)$ respectively, i.e.,

$$
\begin{equation*}
\langle f g\rangle_{\boldsymbol{h}}=\sum_{k=-\infty}^{\infty}\langle f\rangle_{h-k}\langle g\rangle_{k} \tag{6.1.10}
\end{equation*}
$$

Pairing completeness with the notion of inner product yields a so-called Hilbert space.

Definition 4.3.4. An inner product space that is complete is called a Hilbert space.

Fact 4.3.5. Inner Product Space Completeness An inner product space is complete if and only if it is closed.

Example 4.3.6. A Hilbert space on \mathbb{R} Consider the vector space \mathbb{R} with inner product given by the scalar product, and let $x_{n}=1 / n$ for $n \geq 1$ be a sequence; this is clearly a Cauchy sequence that converges to 0 , which lies in \mathbb{R}. It can be shown that Euclidean vector spaces are complete.

Example 4.3.7. Not a Hilbert Space Consider the vector space (0,1] with scalar product for inner product. Then, the sequence $x_{n}=1 / n$ is Cauchy; it tends to $0 \notin(0,1]$, so the sequence does not converge to an element of the space. Hence $(0,1]$ is not complete, and is not a Hilbert space. Note that this is consistent with Fact 4.3.5, since $(0,1]$ is not closed.
Fact 4.3.8. Common Hilbert spaces The spaces \mathbb{R}^{n}, ℓ_{2}, and \mathbb{L}_{2} (see Example 4.1.9 and Definition 4.2.1) with their associated inner products, are all Hilbert spaces.

We now list the main properties of a Hilbert space \mathcal{H} with an inner product denoted by $\langle\underline{x}, \underline{y}\rangle$, and norm $\|\underline{x}\|=\sqrt{\langle\underline{x}, \underline{x}\rangle}$ for $\underline{x}, \underline{y} \in \mathcal{H}$.
Theorem 4.3.9. Let \mathcal{H} be a Hilbert space, and let $\underline{x}, \underline{y}, \underline{z} \in \mathcal{H}$ and $a \in \mathbb{R}$. Then:

1. $\langle\underline{x}, \underline{y}\rangle=\langle\underline{y}, \underline{x}\rangle$ (symmetry)
2. $\langle\underline{x}+\underline{y}, \underline{z}\rangle=\langle\underline{x}, \underline{z}\rangle+\langle\underline{y}, \underline{z}\rangle$ (linearity in the first argument)
3. $\langle a \underline{x}, \underline{z}\rangle=a\langle\underline{x}, \underline{z}\rangle$ (linearity in the first argument)
4. $\|\underline{x}\| \geq 0$ with equality ${ }^{1}$ if and only if $\underline{x}=0$.
5. Cauchy-Schwarz inequality: $|\langle\underline{x}, \underline{y}\rangle| \leq\|\underline{x}\| \cdot\|\underline{y}\|$ with equality if $\underline{x}=a \underline{y}+\underline{b}$ for some $a \in \mathbb{R}$ and $\underline{b} \in \mathcal{H}$.
6. Triangle inequality: $\|\underline{x}+\underline{y}\| \leq\|\underline{x}\|+\|\underline{y}\|$
7. $\|a \underline{x}\|=|a|\|\underline{x}\|$
8. Parallelogram law: $\|\underline{x}+\underline{y}\|^{2}+\|\underline{x}-\underline{y}\|^{2}=2\|\underline{x}\|^{2}+2\|\underline{y}\|^{2}$
9. Continuity of the inner product: if $\left\|\underline{x}_{n}-\underline{x}\right\| \rightarrow 0$ and $\left\|\underline{y}_{n}-\underline{y}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\left\|\underline{x}_{n}\right\| \rightarrow\|\underline{x}\|$ and $\left\langle\underline{x}_{n}, \underline{y}_{n}\right\rangle \rightarrow\langle\underline{x}, \underline{y}\rangle$ as $n \rightarrow \infty$.
10. Completeness: if \underline{x}_{n} is Cauchy, then there exists some $\underline{x} \in \mathcal{H}$ such that $\underline{x}_{n} \rightarrow \underline{x}$ in norm.
[^1]
[^0]: ${ }^{1}$ This is a different notion from the Moving Average process defined in Remark 2.5.7.

[^1]: ${ }^{1}$ Caveat: in $\mathbb{L}_{2}(\Omega, \mathbb{P}, \mathcal{F})$ this is weakened to $\underline{x}=0$ with probability one.

