
Pencil
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estimator that yields a proper distribution function while maintaining its favorable
asymptotic properties. The local linear versions of D̂x(y) and D̄x(y) using Hansen’s
(2004) adjustment are given by:

D̂LL
x (y) =

∑n
i=1 w�

i 1(Yi ≤ y)

∑n
i=1 w�

i
and D̄LL

x (y) =
∑n

i=1 w�
i Λ( y−Yi

h0
)

∑n
i=1 w�

i
. (4.7)

The weights w�
i are defined by

w�
i =

{
0 when β̂ (x−Xi)> 1

wi(1− β̂(x−Xi)) when β̂ (x−Xi)≤ 1
(4.8)

where

wi =
1
h

K(
x−Xi

h
) and β̂ =

∑n
i=1 wi(x−Xi)

∑n
i=1 wi(x−Xi)2 . (4.9)

See Chap. 9 for an application of the above to a time series prediction problem.

Fact 4.2.1 Under regularity conditions that include a well-behaved “density” f (·)
(e.g., large-sample histogram) of the design points x1, . . . ,xn and the assumption
that, for all x, Dx(y) is twice continuously differentiable as a function of y, it follows
that D̄x(y) satisfies an equation similar to Eq. (4.5), namely:

Var(D̄x(y)) = O(
1

hn
) and Bias(D̄x(y)) = O(h2 +h2

0) (4.10)

assuming that h0 = o(h), h → 0, hn → ∞, and
√

hn(h3 + h3
0) = o(1); see Theo-

rem 6.2 of Li and Racine (2007). Furthermore, the two estimators D̄x(y) and D̂x(y)
are asymptotically equivalent, i.e., for any fixed x,

√
hn (D̄x(y)− D̂x(y)) = op(1).

Interestingly, although the two estimators D̄x(y) and D̂x(y) have Mean Squared Er-
rors (MSE) that are of the same asymptotic order, smoothing may give a finite-
sample advantage when the true Dx(y) is smooth (at least twice continuously differ-
entiable) as a function of y. Comparing Eq. (6.2) and (6.4) of Li and Racine (2007),
it follows that:

MSE [D̂y(x)]−MSE [D̄y(x)] = cy,x
h0

nh
+o(max{h4,

1
nh

}) (4.11)

D̄

where cy,x = C∂
∂
y Dx(y)/ f (x) for some constant C ≥ 0.

Remark 4.2.4 (On choice of bandwidths) In order to minimize the asymptotic 
MSE of x(y), the optimal bandwidth specifications are h ∼ chn−1/5 and h0 ∼ 
c0n−2/5 for some positive constants ch,c0. This suggests the following bandwidth 
choice rule-of-thumb which works reasonably well in practice: pick h via cross-
validation, and then let h0 = h2. 

NOTE: An improved method of local linear distribution estimation is given in:       
S. Das and D.N. Politis, `Nonparametric estimation of the conditional distribution 
at regression boundary points', The American Statistician, vol. 74, no. 3, pp. 
232-242, 2020.
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L2– and L1–optimal point predictors of Yn+1. We will give these in detail as part of
the general algorithms for the construction of Model-free predictors and prediction
intervals.

Algorithm 9.3.1 MODEL-FREE (MF) POINT PREDICTORS AND PREDICTION IN-
TERVALS FOR Yn+1

1. Construct U1, . . . ,Un by Eq. (9.25) with Dt(·) estimated by either D̄t(·) or D̄LL
t (·);

for the latter, use the respective formulas with T = t.
2. Construct Z1, . . . ,Zn by Eq. (9.26), and use the methods of Sect. 9.3.4 to estimate

Γn by either Γ̂ AR
n or Γ̂ �

n .
3. Construct ε1, . . . ,εn by Eq. (9.27), and let F̂n denote their empirical distribution.
4. The Model-free L2–optimal point predictor of Yn+1 is then given by

Ŷn+1 =

∫
xgn+1(x)dF̂n(x) =

1
n

n

∑
i=1

εign+1(εi) (9.38)

where the function gn+1 is defined in the predictive equation (9.37) with Dn+1(·)
being again estimated by either D̄n+1(·) or D̄LL

n+1(·), both with T = t.
5. The Model-free L1–optimal point predictor of Yn+1 is given by the median of the

set {gn+1(εi) for i = 1, . . . ,n}.
6. Prediction intervals for Yn+1 with prespecified coverage probability can be con-

structed via the Model-free Bootstrap of Algorithm 2.4.1 based on either the
L2– or L1–optimal point predictor.

Remark 9.3.3 Note that Eq. (9.38) gives an approximation to the bona fide
L2–optimal predictor of Yn+1 without resorting to the L2–optimal linear predictor
(9.7) as in the model-based case.

Algorithm 9.3.1 used the construction of D̄t(·) or D̄LL
t (·) with T = t; using T = t−1

instead, leads to the following predictive version of the algorithm.

Algorithm 9.3.2 PREDICTIVE MODEL-FREE (PMF) POINT PREDICTORS AND PRE-
DICTION INTERVALS FOR Yn+1

The algorithm is identical to Algorithm 9.3.1 except for using T = t − 1 instead of
T = t in the construction of D̄t(·) and D̄LL

t (·).

Remark 9.3.4 Under a model-free setup of a locally stationary time series, Papar-
oditis and Politis (2002b) proposed the Local Block Bootstrap (LBB) in order to
generate pseudo-series Y ∗

1 , . . . ,Y
∗
n whose probability structure mimics that of the

observed data Y1, . . . ,Yn. The Local Block Bootstrap has been found useful for the
construction of confidence intervals; see Dowla et al. (2003, 2013). However, it is
unclear if/how the LBB can be employed for the construction of predictors and pre-
diction intervals for Yn+1.

Recall that when the theoretical transformation Hn is employed, the variables
ε1, . . . ,εn are i.i.d. N(0,1). Due to the fact that features of Hn are unknown and
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must be estimated from the data, the practically available variables ε1, . . . ,εn are
only approximately i.i.d. N(0,1). However, their empirical distribution of F̂n con-
verges to F = Φ as n → ∞. Hence, it is possible to use the limit distribution F = Φ
in instead of F̂n in both the construction of point predictors and the prediction in-
tervals; this is an application of the Limit Model-Free (LMF) approach. The LMF
Algorithm is simpler than Algorithm 9.3.2 as the first three steps of the latter can
be omitted. As a matter of fact, the LMF Algorithm is totally based on the inverse
transformation H−1

n+1 : εn+1 �→Y n+1; the forward transformation Hn : Y n �→ εn is not
needed at all. But for the inverse transformation it is sufficient to estimate Dt(y) by
the step functions D̂t(y) or D̂LL

t (y) with the understanding that their inverse must be
a quantile inverse; recall that the quantile inverse of a distribution D(y) is defined as
D−1(β ) = inf{y such that D(y)≥ β}.

Algorithm 9.3.3 LIMIT MODEL-FREE (LMF) POINT PREDICTORS AND PREDIC-
TION INTERVALS FOR Yn+1

1. The LMF L2–optimal point predictor of Yn+1 is

Ŷn+1 =

∫
xgn+1(x)dΦ(x) (9.39)

where the function gn+1 is defined in the predictive equation (9.37) where Dn+1(·)
is estimated by either D̂n+1(·) or D̂LL

n+1(·), both with T = t −1.
2. In practice, the integral (9.39) can be approximated by Monte Carlo, i.e.,

∫
xgn+1(x)dΦ(x) � 1

M

M

∑
i=1

xign+1(xi) (9.40)

where x1, . . . ,xM are generated as i.i.d. N(0,1), and M is some large integer.
3. Using the above Monte Carlo framework, the LMF L1–optimal point predictor of

Yn+1 can be approximated by the median of the set {gn+1(xi) for i = 1, . . . ,M}.
4. Prediction intervals for Yn+1 with prespecified coverage probability can be con-

structed via the LMF Bootstrap of Algorithm 2.4.3 based on either the L2– or
L1–optimal point predictor.

Remark 9.3.5 Interestingly, there is a closed-form (approximate) solution for the
LMF L1–optimal point predictor of Yn+1 that can also be used in Step 5 of Algo-
rithm 9.3.1. To elaborate, first note that under the assumed weak dependence, e.g.,
strong mixing, of the series {Yt } (and therefore also of {Zt }), we have the following 
approximations (for large n), namely:

Median (Zn+1|F1
n(Z)) � Median 

(
Zn+1|F−

n
∞(Z)

)

= Median 
(
Zn+1|F−

n
∞(Y )

) � Median (Zn+1|F1
n(Y )) .

S.  Das  and D.N.  Pol i t i s ,  Pre  dict iv- - - -e  inference  for  loca  l ly  s tat ionary

t ime ser ies   wit  h  an  appl ica  t ion  to  c l imate  dat  a ,   J .Amer .S tat i s t .Assoc . ,  
vo l .  116 ,  no .  534 ,  pp .  919-934 ,  2021 .  


	Corr 46
	Corr 62
	Part I The Model-Free Prediction Principle
	1 Prediction: Some Heuristic Notions
	1.1 To Explain or to Predict?
	1.2 Model-Based Prediction
	1.3 Model-Free Prediction

	2 The Model-Free Prediction Principle
	2.1 Introduction
	2.2 Model-Free Approach to Prediction 
	2.2.1 Motivation: The i.i.d. Case
	2.2.2 The Model-Free Prediction Principle

	2.3 Tools for Identifying a Transformation Towards i.i.d.–Ness
	2.3.1 Model-Free Prediction as an Optimization Problem 
	2.3.2 Transformation into Gaussianity as a Stepping Stone
	2.3.3 Existence of a Transformation Towards i.i.d.–Ness
	2.3.4 A Simple Check of the Model-Free Prediction Principle
	2.3.5 Model-Free Model-Fitting in Practice

	2.4 Model-Free Predictive Distributions 
	2.4.1 Prediction Intervals and Asymptotic Validity
	2.4.2 Predictive Roots and Model-Free Bootstrap 
	2.4.3 Limit Model-Free Resampling Algorithm
	2.4.4 Prediction of Discrete Variables



	Part II Independent Data: Regression
	3 Model-Based Prediction in Regression
	3.1 Model-Based Regression
	3.2 Model-Based Prediction in Regression
	3.3 A First Application of the Model-Free Prediction Principle 
	3.4 Model-Free/Model-Based Prediction
	3.5 Model-Free/Model-Based Prediction Intervals
	3.6 Pertinent Prediction Intervals
	3.6.1 The i.i.d. Case
	3.6.2 Asymptotic Pertinence of Bootstrap Prediction Intervals 

	3.7 Application to Linear Regression
	3.7.1 Better Prediction Intervals in Linear Regression 
	3.7.2 Simulation: Prediction Intervals in Linear Regression 
	3.7.3 Model-Free vs. Least Squares: A Reconciliation

	Appendix 1: The Solution of Eq.(3.9)
	Appendix 2: L1 vs. L2 Cross-Validation

	4 Model-Free Prediction in Regression
	4.1 Introduction
	4.2 Constructing the Transformation Towards i.i.d.–Ness
	4.3 Model-Free Optimal Predictors 
	4.3.1 Model-Free and Limit Model-Free Optimal Predictors
	4.3.2 Asymptotic Equivalence of Point Predictors
	4.3.3 Cross-Validation for Model-Free Prediction 

	4.4 Model-Free Bootstrap
	4.5 Predictive Model-Free Bootstrap
	4.6 Model-Free Diagnostics
	4.7 Simulations
	4.7.1 When a Nonparametric Regression Model Is True
	4.7.2 When a Nonparametric Regression Model Is Not True

	Acknowledgements
	Appendix 1: High-Dimensional and/or Functional Regressors

	5 Model-Free vs. Model-Based Confidence Intervals 
	5.1 Introduction
	5.2 Model-Based Confidence Intervals in Regression 
	5.3 Model-Free Confidence Intervals Without an Additive Model
	5.4 Simulations
	5.4.1 When a Nonparametric Regression Model Is True
	5.4.2 When a Nonparametric Regression Model Is Not True

	Acknowledgements


	Part III Dependent Data: Time Series
	6 Linear Time Series and Optimal Linear Prediction
	6.1 Introduction
	6.2 Optimal Linear Prediction
	6.3 Linear Prediction Using the Complete Process History
	6.3.1 Autocovariance Matrix Estimation
	6.3.2 Data-Based Choice of the Banding Parameter l

	6.4 Correcting a Matrix Towards Positive Definiteness 
	6.4.1 Eigenvalue Thresholding
	6.4.2 Shrinkage of Problematic Eigenvalues 
	6.4.3 Shrinkage Towards White Noise
	6.4.4 Shrinkage Towards a Second Order Estimate

	6.5 Estimating the Length n Vector γ(n)
	6.6 Linear Prediction Based on the Model-Free Prediction Principle
	6.6.1 A First Idea: The Discrete Fourier Transform 
	6.6.2 Whitening and the Model-Free Linear Predictor
	6.6.3 From Point Predictors to Prediction Intervals

	Acknowledgements

	7 Model-Based Prediction in Autoregression 
	7.1 Introduction
	7.2 Prediction Intervals in AR Models: Laying the Foundation
	7.2.1 Forward and Backward Bootstrap for Prediction 
	7.2.2 Prediction Intervals for Autoregressive Processes
	7.2.3 Pertinent Prediction Intervals in Model-Based Autoregression

	7.3 Bootstrap Prediction Intervals for Linear Autoregressions
	7.3.1 Forward Bootstrap with Fitted Residuals
	7.3.2 Forward Bootstrap with Predictive Residuals
	7.3.3 Forward Bootstrap Based on Studentized Roots
	7.3.4 Backward Bootstrap 
	7.3.5 Generalized Bootstrap Prediction Intervals

	7.4 Alternative Approaches to Bootstrap Prediction Intervals for Linear Autoregressions
	7.5 Simulations: Linear AR Models
	7.5.1 Unconditional Coverage Level
	7.5.2 Conditional Coverage Level

	7.6 Bootstrap Prediction Intervals for Nonparametric Autoregression
	7.6.1 Nonparametric Autoregression with i.i.d Errors
	7.6.2 Nonparametric Autoregression with HeteroscedasticErrors

	Acknowledgements

	8 Model-Free Inference for Markov Processes
	8.1 Introduction
	8.2 Prediction and Bootstrap for Markov Processes
	8.2.1 Notation and Definitions
	8.2.2 Forward vs. Backward Bootstrap for Prediction Intervals 

	8.3 Bootstrap Based on Estimates of Transition Density
	8.4 The Local Bootstrap for Markov Processes
	8.5 Hybrid Backward Markov Bootstrap for Nonparametric Autoregression
	8.6 Prediction Intervals for Markov Processes Based on theModel-Free Prediction Principle
	8.6.1 Theoretical Transformation
	8.6.2 Estimating the Transformation from Data

	8.7 Finite-Sample Performance of Model-Free Prediction Intervals
	8.8 Model-Free Confidence Intervals in Markov Processes
	8.8.1 Finite-Sample Performance of Confidence Intervals

	8.9 Discrete-Valued Markov Processes
	8.9.1 Transition Densities and Local Bootstrap
	8.9.2 Model-Free Bootstrap

	Acknowledgements

	9 Predictive Inference for Locally Stationary Time Series
	9.1 Introduction
	9.2 Model-Based Inference
	9.2.1 Theoretical Optimal Point Prediction
	9.2.2 Trend Estimation and Practical Prediction
	9.2.3 Model-Based Predictors and Prediction Intervals

	9.3 Model-Free Inference
	9.3.1 Constructing the Theoretical Transformation
	9.3.2 Kernel Estimation of the ``Uniformizing'' Transformation
	9.3.3 Local Linear Estimation of the ``Uniformizing'' Transformation
	9.3.4 Estimation of the Whitening Transformation
	9.3.5 Model-Free Point Predictors and Prediction Intervals
	9.3.6 Special Case: Strictly Stationary Data
	9.3.7 Local Stationarity in a Higher-Dimensional Marginal

	Acknowledgements


	Part IV Case Study: Model-Free Volatility Prediction for Financial Time Series
	10 Model-Free vs. Model-Based Volatility Prediction
	10.1 Introduction
	10.2 Three Illustrative Datasets
	10.3 Normalization and Variance-Stabilization
	10.3.1 Definition of the NoVaS Transformation
	10.3.2 Choosing the Parameters of NoVaS 
	10.3.3 Simple NoVaS Algorithm
	10.3.4 Exponential NoVaS Algorithm

	10.4 Model-Based Volatility Prediction 
	10.4.1 Some Basic Notions: L1 vs. L2
	10.4.2 Do Financial Returns Have a Finite Fourth Moment?

	10.5 Model-Free Volatility Prediction 
	10.5.1 Transformation Towards i.i.d.–Ness
	10.5.2 Volatility Prediction Using NoVaS
	10.5.3 Optimizing NoVaS for Volatility Prediction
	10.5.4 Summary of Data-Analytic Findings on VolatilityPrediction

	10.6 Model-Free Prediction Intervals for Financial Returns
	10.7 Time-Varying NoVaS: Robustness Against Structural Breaks
	Acknowledgements


	References

	Corr 100
	Corr 120
	Corr 121
	Corr 122
	Corr 136
	Corr 192
	Part I The Model-Free Prediction Principle
	1 Prediction: Some Heuristic Notions
	1.1 To Explain or to Predict?
	1.2 Model-Based Prediction
	1.3 Model-Free Prediction

	2 The Model-Free Prediction Principle
	2.1 Introduction
	2.2 Model-Free Approach to Prediction 
	2.2.1 Motivation: The i.i.d. Case
	2.2.2 The Model-Free Prediction Principle

	2.3 Tools for Identifying a Transformation Towards i.i.d.–Ness
	2.3.1 Model-Free Prediction as an Optimization Problem 
	2.3.2 Transformation into Gaussianity as a Stepping Stone
	2.3.3 Existence of a Transformation Towards i.i.d.–Ness
	2.3.4 A Simple Check of the Model-Free Prediction Principle
	2.3.5 Model-Free Model-Fitting in Practice

	2.4 Model-Free Predictive Distributions 
	2.4.1 Prediction Intervals and Asymptotic Validity
	2.4.2 Predictive Roots and Model-Free Bootstrap 
	2.4.3 Limit Model-Free Resampling Algorithm
	2.4.4 Prediction of Discrete Variables



	Part II Independent Data: Regression
	3 Model-Based Prediction in Regression
	3.1 Model-Based Regression
	3.2 Model-Based Prediction in Regression
	3.3 A First Application of the Model-Free Prediction Principle 
	3.4 Model-Free/Model-Based Prediction
	3.5 Model-Free/Model-Based Prediction Intervals
	3.6 Pertinent Prediction Intervals
	3.6.1 The i.i.d. Case
	3.6.2 Asymptotic Pertinence of Bootstrap Prediction Intervals 

	3.7 Application to Linear Regression
	3.7.1 Better Prediction Intervals in Linear Regression 
	3.7.2 Simulation: Prediction Intervals in Linear Regression 
	3.7.3 Model-Free vs. Least Squares: A Reconciliation

	Appendix 1: The Solution of Eq.(3.9)
	Appendix 2: L1 vs. L2 Cross-Validation

	4 Model-Free Prediction in Regression
	4.1 Introduction
	4.2 Constructing the Transformation Towards i.i.d.–Ness
	4.3 Model-Free Optimal Predictors 
	4.3.1 Model-Free and Limit Model-Free Optimal Predictors
	4.3.2 Asymptotic Equivalence of Point Predictors
	4.3.3 Cross-Validation for Model-Free Prediction 

	4.4 Model-Free Bootstrap
	4.5 Predictive Model-Free Bootstrap
	4.6 Model-Free Diagnostics
	4.7 Simulations
	4.7.1 When a Nonparametric Regression Model Is True
	4.7.2 When a Nonparametric Regression Model Is Not True

	Acknowledgements
	Appendix 1: High-Dimensional and/or Functional Regressors

	5 Model-Free vs. Model-Based Confidence Intervals 
	5.1 Introduction
	5.2 Model-Based Confidence Intervals in Regression 
	5.3 Model-Free Confidence Intervals Without an Additive Model
	5.4 Simulations
	5.4.1 When a Nonparametric Regression Model Is True
	5.4.2 When a Nonparametric Regression Model Is Not True

	Acknowledgements


	Part III Dependent Data: Time Series
	6 Linear Time Series and Optimal Linear Prediction
	6.1 Introduction
	6.2 Optimal Linear Prediction
	6.3 Linear Prediction Using the Complete Process History
	6.3.1 Autocovariance Matrix Estimation
	6.3.2 Data-Based Choice of the Banding Parameter l

	6.4 Correcting a Matrix Towards Positive Definiteness 
	6.4.1 Eigenvalue Thresholding
	6.4.2 Shrinkage of Problematic Eigenvalues 
	6.4.3 Shrinkage Towards White Noise
	6.4.4 Shrinkage Towards a Second Order Estimate

	6.5 Estimating the Length n Vector γ(n)
	6.6 Linear Prediction Based on the Model-Free Prediction Principle
	6.6.1 A First Idea: The Discrete Fourier Transform 
	6.6.2 Whitening and the Model-Free Linear Predictor
	6.6.3 From Point Predictors to Prediction Intervals

	Acknowledgements

	7 Model-Based Prediction in Autoregression 
	7.1 Introduction
	7.2 Prediction Intervals in AR Models: Laying the Foundation
	7.2.1 Forward and Backward Bootstrap for Prediction 
	7.2.2 Prediction Intervals for Autoregressive Processes
	7.2.3 Pertinent Prediction Intervals in Model-Based Autoregression

	7.3 Bootstrap Prediction Intervals for Linear Autoregressions
	7.3.1 Forward Bootstrap with Fitted Residuals
	7.3.2 Forward Bootstrap with Predictive Residuals
	7.3.3 Forward Bootstrap Based on Studentized Roots
	7.3.4 Backward Bootstrap 
	7.3.5 Generalized Bootstrap Prediction Intervals

	7.4 Alternative Approaches to Bootstrap Prediction Intervals for Linear Autoregressions
	7.5 Simulations: Linear AR Models
	7.5.1 Unconditional Coverage Level
	7.5.2 Conditional Coverage Level

	7.6 Bootstrap Prediction Intervals for Nonparametric Autoregression
	7.6.1 Nonparametric Autoregression with i.i.d Errors
	7.6.2 Nonparametric Autoregression with HeteroscedasticErrors

	Acknowledgements

	8 Model-Free Inference for Markov Processes
	8.1 Introduction
	8.2 Prediction and Bootstrap for Markov Processes
	8.2.1 Notation and Definitions
	8.2.2 Forward vs. Backward Bootstrap for Prediction Intervals 

	8.3 Bootstrap Based on Estimates of Transition Density
	8.4 The Local Bootstrap for Markov Processes
	8.5 Hybrid Backward Markov Bootstrap for Nonparametric Autoregression
	8.6 Prediction Intervals for Markov Processes Based on theModel-Free Prediction Principle
	8.6.1 Theoretical Transformation
	8.6.2 Estimating the Transformation from Data

	8.7 Finite-Sample Performance of Model-Free Prediction Intervals
	8.8 Model-Free Confidence Intervals in Markov Processes
	8.8.1 Finite-Sample Performance of Confidence Intervals

	8.9 Discrete-Valued Markov Processes
	8.9.1 Transition Densities and Local Bootstrap
	8.9.2 Model-Free Bootstrap

	Acknowledgements

	9 Predictive Inference for Locally Stationary Time Series
	9.1 Introduction
	9.2 Model-Based Inference
	9.2.1 Theoretical Optimal Point Prediction
	9.2.2 Trend Estimation and Practical Prediction
	9.2.3 Model-Based Predictors and Prediction Intervals

	9.3 Model-Free Inference
	9.3.1 Constructing the Theoretical Transformation
	9.3.2 Kernel Estimation of the ``Uniformizing'' Transformation
	9.3.3 Local Linear Estimation of the ``Uniformizing'' Transformation
	9.3.4 Estimation of the Whitening Transformation
	9.3.5 Model-Free Point Predictors and Prediction Intervals
	9.3.6 Special Case: Strictly Stationary Data
	9.3.7 Local Stationarity in a Higher-Dimensional Marginal

	Acknowledgements


	Part IV Case Study: Model-Free Volatility Prediction for Financial Time Series
	10 Model-Free vs. Model-Based Volatility Prediction
	10.1 Introduction
	10.2 Three Illustrative Datasets
	10.3 Normalization and Variance-Stabilization
	10.3.1 Definition of the NoVaS Transformation
	10.3.2 Choosing the Parameters of NoVaS 
	10.3.3 Simple NoVaS Algorithm
	10.3.4 Exponential NoVaS Algorithm

	10.4 Model-Based Volatility Prediction 
	10.4.1 Some Basic Notions: L1 vs. L2
	10.4.2 Do Financial Returns Have a Finite Fourth Moment?

	10.5 Model-Free Volatility Prediction 
	10.5.1 Transformation Towards i.i.d.–Ness
	10.5.2 Volatility Prediction Using NoVaS
	10.5.3 Optimizing NoVaS for Volatility Prediction
	10.5.4 Summary of Data-Analytic Findings on VolatilityPrediction

	10.6 Model-Free Prediction Intervals for Financial Returns
	10.7 Time-Varying NoVaS: Robustness Against Structural Breaks
	Acknowledgements


	References




