are enough o imply asymptotic validity of the bootstrap pmd:clmn interval. Also r.Ye
note that part (ii) of Definition 3.6.1 is the condition needed in order to show that

the bootstrap can yield asymptotically valid confidence intervals for the conditional

mean p((-). In many cases in the literature, this condition has been already estab-

lished; we can build upon this for the purpose of constructing pertinent prediction

intervals.

Consider again the heteroscedastic model (3.1). Much of the above discus-
sion carries over verbatim; for example, the MSE-optimal predictor of ¥, given
X,o1 = xyuq is still ¥,y = fi{x,-1). The only difference is that the predictive root
now is expressed as

¥oi1 — Fast = O(Xn+1)Ens1 + Ay, (3.25)

and the bootstrap predictive root as
Yooy = Froy = 8l )en +A; (3.26)

where &(-) is the (consistent) estimator of o(-) that is employed in the bootstrap
data generation mechanism. Hence, the following definition 1s immediate.

Definition 3.6.2 Asympitotic pertinence of booistrap prediction intervals under
heteroscedastic model (3.1). Consider a bootstrap prediction interval for ¥, .
that is based on approximating the distribution of the predictive root ¥, — ¥,
of eq. (3.25) by the distribution of the bootstrap predictive root ¥, —¥* | of
eg. (3.26). The interval will be gaHer~ssymptotically pertinent provided the boot- ](
strap satisfies conditions (1 i) or DefiyiNon 3.6.1 together with the additional ©
requirement; ‘

(i) & (xns1 ) — G {ns1 ) —s 0,

Furthermore, the bootstrap prediction interval for Y,,.| that is based on the approx-
imating the distribution of the studentized predictive root (Y. — ¥..1)/V, by the

distribution of the bootstrap studentized predictive root J¥= F;_j] O will be
called asymptotically pertinent if, in addition conditio @) ution 3.60.1 also o ]C

holds.

Fact 3.6.1 Under model (3.1) and standard regularity conditions, the model-based

bootstrap prediction interval (3.16) will be asymptotically pertinent provided the
bandwidth h is chosen in such a way that undersmoothing occurs, iLe., letting

h=o({n=17) when the kernel K is nonnegative, Otherwise, interval (3.16) will be
asymptotically valid but not pertinent.

Remark 3.6.2 Taking into account that Ay = o,(1) .
tor for the (conditional) variance of the predictive, — ¥y -1 under model (3.1) F
is simply V, = &(x,.1). Therefore, condition Definition 3.6.1 can be re-  °
written a8 &(x,.) — 6" (x5-1) L.0,ie, itis just a bootstrap version of condi-

tion (iv") or Definition 3.6.2. As 2 matter of fact. resampling in the heteroscedastic

as i — oo an immediate estima-



Pencil


4.2 Constructing the Transformation Towards i.i.d.—Ness 61

estimator that yields a proper distribution function while maintaining its favorable
asymptotic properties. The local linear versions of D, (y) and D, (y) using Hansen’s
(2004) adjustment are given by:

i WA ()

Dt(y) = —Z?:I;Z ll(jf 2 and DH(y) - TS e 4.7)
The weights w{ are defined by
W?:{O A when[?(x—Xi)>1 4.8)
wi(l—B(x—X;)) whenB(x—X;) <1
where
Wi = % K(x_hxi ) and B = —22;‘11 v:((;__;é))z 4.9)

See Chap. 9 for an application of the above to a time series prediction problem.

Fact 4.2.1 Under regularity conditions that include a well-behaved “density” f(-)
(e.g., large-sample histogram) of the design points x1,...,x, and the assumption
that, for all x, Dy(y) is twice continuously differentiable as a function of y, it follows
that Dy(y) satisfies an equation similar to Eq. (4.5), namely:

_ 1 _

Var (Dx(y)) = O(;~-) and Bias (Dx(y)) = O(* + hj) (4.10)
assuming that ho = o(h), h — 0, hn — oo, and \/hn(h> + h3) = o(1); see Theo-
rem 6.2 of Li and Racine (2007). Furthermore, the two estimators Dy (y) and D (y)
are asymptotically equivalent, i.e., for any fixed x, VVhn (Dy(y) — Dx(y)) = 0,(1).

Interestingly, although the two estimators D, (y) and D,(y) have Mean Squared Er-
rors (MSE) that are of the same asymptotic order, smoothing may give a finite-
sample advantage when the true Dy (y) is smooth (at least twice continuously differ-
entiable) as a function of y. Comparing Eq. (6.2) and (6.4) of Li and Racine (2007),
it follows that:

MSE [Dy(x)] — MSE [D,(x)] = cw% + o(max{h*, ﬁ} ) (4.11)

where ¢, = ngDx (v)/ f(x) for some constant C > 0.

Remark 4.2.4 (On choice of bandwidths) In order to minimize the asymptotic
MSE of D,(y), the optimal bandwidth specifications are i ~ c;n~'/> and hy ~
con~2/5 for some positive constants c¢;,co. This suggests the following bandwidth
choice rule-of-thumb which works reasonably well in practice: pick & via cross-
validation, and then let 1y = h2,

NOTE: An improved method of local linear distribution estimation is given in:
S. Das and D.N. Politis, ‘Nonparametric estimation of the conditional distribution
at regression boundary points', The American Statistician, vol. 74, no. 3, pp.
232-242, 2020.



6 Limear ime seres and optimal hnear prediction
Y=Y wZ_, (6.1)
k=—na

where the coefficients yy are (al least) square-summable, and the series {74} is
e - § 0 o - x . 4 X .

Li.d. with mean zero and variance o~ == 0. A linear lime series { ¥ | is called cansal
if wy =0Ffor k< 0.ie,if

V=Y wZ_, (6.2)
k=0

Remark 6.1.1 Eg. (6.2) should not be confused with the Wold decomposition that
all purely nondelerministic, stalionary time series possess—see e.g. Brockwell and
Davis (1991 ). In the Wold decomposition, the innovations {Z, | are only assumed Lo
be awhite noise and not 1.1.d.; the 1.1.d. assumplion is of course much stronger.

A linear time series is called imvertible if one can use eqg. (6.1) to solve for Z; in
terms of present and past ¥ s in which case we can write

V=Y &¥_;+Z; (6.3)
k=1

atypical assumption here is that the sequence @ is absolutely summable. For causal
lime series, invertibility occurs when the power series wis) = ¥, yis* has no roots
on the unit disc. Similarly, for a lime series satisfying eq. (6.3), causality occurs if
the function @{s)=Y" , ¢y.«* has no roots on the unit disc. Now it is not difficult 1y
see thal for a linear ime series satisfving eg. (6.2) and (6.3) we have

E(Yot1|¥ Ya-1,..0 =Y &u¥
k=1 ]

where E{¥i+1|¥a. ¥a=-1....) denotes the conditional expectation given the infinite

history. Hence, given the mfinite past, the property of the optimal predictor being

linear is shared by the class of linear time series that are cansal and invertible.!
Under standard weak dependence conditions, it holds that

E(Yol¥-1,¥-z2,... . Y-m) = E(Yo|¥Y1.Y2,... ) as m— =

for almost all sample paths of {¥. ¢ << 0}. Using the assumed stationarity of {¥; |
we can then wrile

BV 10 X M B L I W ) (6.4

for large n,ie.,

Effn|K. Yoo h) = Y aFiy.
=1

' A slight generalization of this statement is possihle, i.e., replacing the i.i.d. assumption for { £ }
with 2 martingale ditference assumption; see g, Politis {2009), or Kokoszka and Politis (200 1),
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Definition 7.2.1 Asympiotic periinence of booistrap prediction intervals under
madel (7.1} Consider a bootstrap prediciion interval for Y, that is based on ap-
proximating the distribution of the predictive root Y, — ¥opy of eg. (7.8) by the
distribution of the bootstrap predictive root ¥ | — F’_,,'.rl of eq. (19). The inlerval
will be called asymplotically pertinent provided the bootstrap satisfies the following

three conditions as n — s conditionallyon ¥, pp1 = Ya—ps1. Yo = ¥

(i) sup, |P & <a)—P'e.  <a) Ein presupposing that the ervor distribu-
PR B8 Com TR R 5. :

(i) |[Pla,Ay <a)—F (nAy < i )| L for some sequence a, — oo, and for all
points a where the assumed nontrivial limit of Pla,Ay < a) is conrinous.

(iit) £y, and A}, are independent in the bootstrap world—as their analogs are in
the real world due to the cansality asswnption (7T.3).

Furthermore, the booisirap predicion mterval for Y, 1 that is based on the approx-
imating the distribution of the siudentized predictive root (¥, — ¥or 1) /¥, by the
disiribution af the booistrap studentized predictive oot (Y, | — F',_ h'l_."';"_.,' will he
called asvmpiotically pertinent if, in addition to (i)—{iii) above, the following alse
holds:!

{1v) Ii-:Ji'!_-'rlif'::.,' ket 1.

Consider now the heteroscedastic model (7.2). Much of the above discussion carries
over verbatim; for example, our predictor of ¥4 given ¥; = vy, F, = ¥, 15 still
Yot1 =MW (Va.....¥a—p+1 ). The only difference is that the predictive rool now is

}..l:-l-l F:-!a_. ] — LT':__"-I.! §b g _'|-'_||_I||+ |_:|'E:||J_.| _"1.” 5§ I'? H:l:'

and the bootstrap predictive root is

'y

AERL et

nd1 == ﬁl:_".”.. ..._'|-..l|—|l|-!-|_:l-l‘-:-l r"'l.l |.|i‘| ]’

n+1 Tty
where &1 ) i1s the {consistent) estimator of o) that s employed mn the bootsirap
data generation mechanism. Hence, the following definition 1s immediate.

Definition 7.2.2 Asymplotic periinence af bootstrap prediction intervals under
maodel (T.2). Consider a bootstrap prediction interval for Yo that is based on ap-
proximating the distribution of the predictive root ¥ — F_..,-.. af eg. (T.10) by the
distribuiion of the bootsirap predictive root ¥! | —¥* | of eq. (T.11). The interval
will be cojdmd asymplotically pertinent provided the bootstrap satisfies conditions
efinition 7.2_1 together with the additional reguivement!
Vot 1) = B o Yamprr ) —— 0.
Furthermoge, the booistrap prediction mterval for Y, that is based on the approx-
imating th distribution of the swdentized predictive root (¥, — F_.H. |_]_.-";f.. by the
distribution of the bootstrap studentized predictive wot (Y] :i:'.,J'T IJ'l_.-"i’-"”' will be
called asvptatically pevtinent if, in addition condition {§ Sfinition 7.2.1 also
faldx
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7.3.1 Forward Booistrap with Fitted Residuals

Given a sample ¥; =w.....¥, = ¥, from (7.12), the following are the steps needed
lo construct the prediction interval for future value ¥, 1 based on the prediclive root
method.

Algorithm 7.3.1 FORWARD BOOTSTRAP WITH FITTED RESIDUALS (FF)

1 Use all observations vi,---,vn lo obtain the Least Squares (LS) estimators & =
lllilgu. e [.}. I by fitting the following linear mode!

Eycyvs Yaen | o

1 Na—a +=r

Yot > ST : Ep+1

2 Forit = p+1. o on compute the fitted value and fitted residuals:

n

n I_' [* & -

Vi =g+ L divi— i, and & =y, —¥.
i=1

3. Center the fitted residuals: let v, = & — ¢ fort=p+1,--.m and E=(n—
pyiyn & let the empivical disinibution of vy be denoted by F,.

{a)Draw baotstrap pseudo-residuals £} g8 . Lid. from F,.

(B To enswve stationarity of the bootstrap series, we can use an arbitrary initial
condition such as (1], ML) = (0. ...0), generate n + M psendo-data for
some large positive integer M, and then discard the first M dara. In other
words, generate {u) .1 = p + 1} by the veciirsion:

! =dy + E uz:_.rr_,'__, +g forr=p+1,--- nt+ M
i=1

Firally, define vy} =uwy, fort=12.--- n

{c)Based on the prendo-data {v).--- v, |, re-estimate thgDefficients ¢ by the
LS estimator 9" = q,rﬁ, - ) as instep 1. T compute the bootstrap
predicied value I

-"'.'II+I = I:':"I'I LE L "-'}_l -"'..'I' +1—j"
=1

{difn arder to conduct conditionally valid predictive inference. re-define the
A

last p observations to match the original observed values, ie, let y,_ ., =
Voo pt1-77 ¥y = Yy Then, generate the fuinve hooistrap observation




gﬁflﬁ-a Wo ”‘;—uwiwa-n of LL)' ,
| €. 7~n+1 =  [wit\

ytion Intervals tor Linear Autoregressions

4. Steps {a ) e) above are repeated B timex, tagel replicates are col-
lected in the form of an empivical disteibution 4 initile is denoted gl o).
5. Compute the predicted value $,401 = ¢y + 1"
. Constenet the (1 — o) 100% equal-tailed prec W for Yo as
[For1 +gleef2), Fora +g(1 — e /2)]. (1.14)

Remark 7.3.1 Step 3 (b) of the ahove algorithm deseribes one method 1o gener-
ate a stationary stretch of a time series defined by an autoregressive (or in general
Markovian) structure; the techrigue allows the practiioner to nol worry aboul the
initial conditions. A different approach is to generale the starting points of the au-
loregression fromits stalionary distribution, e.g.. replace Step 3 (b) by (h') below:

(B Let (vy .- vy ) e chosen at random from the set of p-tuplets {(vi. - Vpsp1)

,
Kol

Jork =1.-- .n—p+ 1} Then, generate {1 = p + 1} by the recursion:

¥ = o+ x divi_ +& fort=p+1,---.n
i=1

In what follows, we will use either{or both) of these technigues in order 1o generate
stationary autoregressive (or Markovian ) Lime series in the boolstrap world.

Remark 7.3.2 Algorithm 7.3.1 focuses on one-step-ahead prediction for simplic-
ity. However, it is sirai ghtforward to extend these results—as well as those in the
sequel—in order 1o construct a prediction interval for ¥, 4y, for some f = | based on
the data ¥, . In addition, the use of resampling affords us the possibility of construct-
ing joint, i.e., simullaneous, prediction intervals for ¥, ... ., ¥, o, with prespecified
coverage level; details are given in Pan and Politis (2015).

7.3.2 Forward Booitstrap with Predictive Residuals

Asin Chapler 3. we may consider using predictive—as opposed Lo fitled—residuals
for the bootstrap. We define the predictive residuals in the AR context ms &' =
% — ¥ where §;' is computed from the delete-v, data set. i.e. the available data
for the scatterplot of vp vs. {¥i—p. -~ . %—1 | over which the LS fitting thal takes
place excludes Lhe single point thal corresponds o &k = 1. The forward bootsirap
with predictive residuals is similar to Algorithm 7.3.1 except for Siep 2.

el @ 8:23 am
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7.6 Bootstrap Prediction Intervals for N onparametric
Autoregression

In the last several sections, the focus was on prediction intervals for linear autore-
aressions. In a nonlinear auloregression seiting, back ward bootstrap methods have
not been found useful mainly because it is unclear how to generale a nonlinear
maodel such as eq. (7.1} backwards. By contrast, extension of the four forward boot-
strap methods to nonlinear—but paramelric—autoregressions is straightforward;
see Pan and Politis (2015) for details. In what follows, we provide some details
on how to employ the forward bootstrap in order to construct boolstrap prediction
mlervals under a nonparamelric auloregression model fitted via kernel smoothing,

7.6.1 Nonparametric Autoregression with i.i.d Errors

In this subsection, we consider a stalionary and geometrically ergodic process salis-
fving eq. (7.1} with the conditional mean function (- ) being unknown but assumed
smooth. Given a sample Y7 = yy. . Yy = va. letx, = (vicr. . ¥ —pgr ) a8 be-
fore.

Algorithm 7.6.1 FORWARD BOOTSTRAP WITH FITTED RESIDUALS (FF)

I. Forx € RY, construct the Nadarava- Watson kernel estimator il -) as

el
Li=p KU i (7.23)

fi(x) =
, Ell—l j':ll | X=X y
f=p FSh e
where ||| is g norm on RY, and K{-) is compactly supporied, svinmetric densiity
function with bounded derivative. As usual the bandwidih satisfies h — O b
it — oo,
2 Compute the fitted residuals: & = v —mixi—) fori=p+1.---.n
3 Cenier the residuals: ¥, = & —(n—p)~ 1 1" o & fori=p+1,--.n.

{a)Sample randomly {with replacement) from the values Foer.--- Py o create
boatstrap psendo evrors &) fori= —M+p. .- .0+ | where M is some large
positive number

{b)Let Xp = L ¥ptr o virr) where Iis generated as a discrete random variable
uniforn on the valuesQ, 1. n—p and defime (v2y, v0 0 (oo ¥ 3

xg- Then, generate v! by the recursion:

Vo=l ) 8 fd

where X = (¥ .- ¥_.y i

- . e I. '] & &
{c) Divap the first M “burn in® observations o malle sure that the starting values
have an insignificant effect. Then recompuie il kernel estimator i’ (- ) from

¢ © 813 m*
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L,— and Li—optimal point predictors of ¥, 1. We will give these in detail as part of
the general algorithms for the construction of Model-free predictors and prediction
intervals.

Algorithm 9.3.1 MODEL-FREE (MF) POINT PREDICTORS AND PREDICTION IN-
TERVALS FOR Y, 4|

1. ConstructUy,...,Uy, by Eq. (9.25) with D,(-) estimated by either D;(-) or DF(-);
for the latter, use the respective formulas with T =t.

2. Construct Zy,...,Z, by Eq.(9.26), and use the methods of Sect. 9.3.4 to estimate
T;, by either AR or I,

3. Construct €1,...,&, by Eq.(9.27), and let F}, denote their empirical distribution.
4. The Model-free Ly—optimal point predictor of Y, is then given by
N " . 1Z
Yip1= //gn+1(x)an(X) = gigni1(&) (9.38) <

i=1

where the function g, 1 is defined in the predictive equation (9.37) with Dy (+)
being again estimated by either Dy, (-) or D5 (-), both with T =1.

5. The Model-free Li—optimal point predictor of Y, | is given by the median of the
set {gn+1(&) fori=1,...,n}.

6. Prediction intervals for Y, | with prespecified coverage probability can be con-
structed via the Model-free Bootstrap of Algorithm 2.4.1 based on either the

Lr— or Li—optimal point predictor.

Remark 9.3.3 Note that Eq.(9.38) gives an approximation to the bona fide
Ly—optimal predictor of Y, without resorting to the Lr—optimal linear predictor
(9.7) as in the model-based case.

Algorithm 9.3.1 used the construction of D, (-) or DX (-) with T =t; using T =1 — 1
instead, leads to the following predictive version of the algorithm.

Algorithm 9.3.2 PREDICTIVE MODEL-FREE (PMF) POINT PREDICTORS AND PRE-
DICTION INTERVALS FOR Y,,+1

The algorithm is identical to Algorithm 9.3.1 except for using T =t — 1 instead of
T =t in the construction of D, (-) and D ().

Remark 9.3.4 Under a model-free setup of a locally stationary time series, Papar-
oditis and Politis (2002b) proposed the Local Block Bootstrap (LBB) in order to
generate pseudo-series Y|',...,Y" whose probability structure mimics that of the
observed data Y1,...,Y,. The Local Block Bootstrap has been found useful for the
construction of confidence intervals; see Dowla et al. (2003, 2013). However, it is
unclear if/how the LBB can be employed for the construction of predictors and pre-
diction intervals for Y, .

Recall that when the theoretical transformation H, is employed, the variables
€,...,& are i.i.d. N(0,1). Due to the fact that features of H, are unknown and
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must be estimated from the data, the practically available variables g;,... ¢, are
only approximately i.i.d. N(0,1). However, their empirical distribution of £, con-
verges to F = @ as n — oo. Hence, it is possible to use the limit distribution F = @
in instead of £, in both the construction of point predictors and the prediction in-
tervals; this is an application of the Limit Model-Free (LMF) approach. The LMF
Algorithm is simpler than Algorithm 9.3.2 as the first three steps of the latter can
be omitted. As a matter of fact, the LMF Algorithm is totally based on the inverse
transformation H, +11 1 €,41 Y, q; the forward transformation H,, : Y, — £, is not
needed at all. But for the inverse transformation it is sufficient to estimate D;(y) by
the step functions D, (y) or DF-(y) with the understanding that their inverse must be
a quantile inverse; recall that the quantile inverse of a distribution D(y) is defined as
D~(B) = inf{y such that D(y) > B}.

Algorithm 9.3.3 LIMIT MODEL-FREE (LMF) POINT PREDICTORS AND PREDIC-
TION INTERVALS FOR Y, ;|

1. The LMF Ly—optimal point predictor of Y, 11 is
Pt = [ o (a0 039 <

where the function g, is defined in the predictive equation (9.37) where Dy, (+)

is estimated by either Dy y(-) or DXL (-), both with T =1 — 1.

2. In practice, the integral (9.39) can be approximated by Monte Carlo, i.e.,

1 M
[ Henar@)dd() = 22 3 figa () 040 <
i=1
where x1,...,xy are generated as i.i.d. N(0,1), and M is some large integer.

3. Using the above Monte Carlo framework, the LMF Li—optimal point predictor of
Y11 can be approximated by the median of the set {g,+1(x;) fori=1,... ,M}.

4. Prediction intervals for Y, | with prespecified coverage probability can be con-
structed via the LMF Bootstrap of Algorithm 2.4.3 based on either the Ly— or
Li—optimal point predictor.

Remark 9.3.5 Interestingly, there is a closed-form (approximate) solution for the
LMF L;—optimal point predictor of Y, that can also be used in Step 5 of Algo-
rithm 9.3.1. To elaborate, first note that under the assumed weak dependence, e.g.,

strong mixing, of the series {¥;} (and therefore also of {Z }), we have the following
approximations (for large n), namely:

Median (Z,41|.F{(2)) ~ Median (Z,11|.F"..(2))

= Median (Z,1|7"..(Y)) = Median (Zy1| 7] (Y)).

S. Das and D.N. Politis, Predictive inference for locally stationary

time series with an application to climate data, J. Amer.Statist.Assoc.,
vol. 116, no. 534, pp. 919-934, 2021.
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