
Scalable subsampling: computation, aggregation and inference

By Dimitris N. Politis
Department of Mathematics

and Halicioglu Data Science Institute
University of California, San Diego
La Jolla, CA 92093-0112, USA

dpolitis@ucsd.edu

Summary

Subsampling has seen a resurgence in the Big Data era where the standard, full-resample size boot-
strap can be infeasible to compute. Nevertheless, even choosing a single random subsample of size
b can be computationally challenging with both b and the sample size n being very large. The
paper at hand shows how a set of appropriately chosen, non-random subsamples can be used to con-
duct effective—and computationally feasible—subsampling distribution estimation. Furthermore,
the same set of subsamples can be used to yield a procedure for subsampling aggregation—also
known as subagging—that is scalable with big data. Interestingly, the scalable subagging estima-
tor can be tuned to have the same (or better) rate of convergence as compared to θ̂n. Statistical

inference could then be based on the scalable subagging estimator instead of the original θ̂n.

Some key words: Bagging, Big Data, bootstrap, distributed inference, subagging.

1 Introduction

Assume data X1, . . . , Xn that are independent, identically distributed (i.i.d.) taking values in an
arbitrary space. Often, this space will be Rd but other choices exist, e.g., it can be a function space,
a space of networks, etc. A statistic θ̂n = Tn(X1, . . . , Xn) is employed to estimate a parameter θ
associated with the common distribution of the data. Assume that θ takes values on a normed linear
space Θ with norm denoted by || · ||.

Let Jn(x) = P{τng(θ̂n − θ) ≤ x} where the rate of convergence τn diverges to infinity as n
increases. We will generally assume that the real-valued function g(·) has the properties of a norm
on Θ with one interesting exception: if Θ = R, then g(·) could be taken to be the identity function,
leading to one-sided inference. In the general case where g(·) is indeed a norm, note that it can be a
different norm than || · ||. For example, if Θ = Rp equipped with Euclidean norm, it is often useful to
let g(·) be the sup-norm on Rp; estimating the quantiles of Jn would then lead to simultaneous con-
fidence intervals and/or simultaneous hypothesis tests for all p coordinates of θ. We will also assume:

Assumption A. There exists a non-degenerate probability distribution J , such that Jn(x) → J(x)
as n → ∞ for all x points at which J(x) is continuous.

Subsampling is a general statistical method developed in the 1990s aimed at estimating the
sampling distribution Jn in order to conduct nonparametric inference such as the construction of
confidence intervals and hypothesis tests; see Politis, Romano and Wolf (1999) and the references
therein. To describe it, let the subsample size b be a positive integer less than n, and consider all
the subsets of size b of the sample X1, . . . , Xn. There are Q =

(
n
b

)
such subsets that can be ordered

in an arbitrary fashion and denoted by Bj for j = 1, . . . , Q.
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Compute the subsample statistics θ̂b,j = Tb(Bj) for j = 1, . . . , Q, and subsampling distribution

Ln,b(x) = Q−1
∑Q

i=1 1{τbg(θ̂b,i − θ̂n) ≤ x}. Under Assumption A and the additional conditions

n → ∞ and b → ∞ but with b/n → 0 (1)

and τb/τn → 0 (2)

it was shown that Ln,b(x)
P−→ J(x) for all x points of continuity of J , where

P−→ denotes convergence

in probability; see Theorems 3.1 and 3.2 of Politis and Romano (1994). Note that Ln,b(x)
P−→ J(x)

implies that Ln,b(x)− Jn(x)
P−→ 0, i.e., Ln,b(x) can be used as a proxy for the unknown Jn(x) so as

to conduct statistical inference based on θ̂n. Also note that if the rate of convergence satisfies

τn = nαL(n) for some α > 0. (3)

for some slowly varying function L(·) such that limn→∞
L(sn)
L(n) = 1 for any s > 0, then eq. (2) follows.

It was recognized early on that if n is large, it is not realistic to compute θ̂b,j for j = 1, . . . , Q since
Q can be astronomically large. For that reason, Corollary 2.1 of Politis and Romano (1994) showed
that a stochastic approximation to Ln,b(x) can be used instead. The stochastic approximation relies
on B randomly chosen subsamples from the set {Bj , j = 1, . . . , Q} with B tending to infinity; in
practice, B is taken large enough so that the error of the stochastic approximation is negligible.

Subsampling has seen a resurgence in the Big Data era of the 21st century where the standard,
full-resample size bootstrap can be infeasible to compute; see e.g., Jordan (2013), Kleiner et al.
(2014), and Sengupta et al. (2016). Nevertheless, even choosing a single random subsample of size b
can be computationally challenging. As pointed out in Ting (2021), drawing a random sample of size
b from n items using the Sparse Fisher-Yates Sampler takes O(b) time and space which corresponds
to optimal time and space complexity for this problem. To perform subsampling inference, we need
to generate B such subsamples each of size b. Therefore, the computational cost of just drawing the
random subsamples is of order O(bB) where both b and B are meant to tend to infinity. Approximate
solutions such as Poisson sampling are often used instead; see Bertail et al. (2017).

In the next section we show how a set of appropriately chosen, non-random subsamples can be
used to conduct effective—and computationally feasible—distribution estimation via subsampling.
In Section 4 we show how the same set of subsamples can be used to yield a procedure for subsampling
aggregation—also known as subagging—that is scalable in an attempt to remedy computability issues
discussed in Section 3. Interestingly, the scalable subagging estimator can be tuned to have the same
(or better) rate of convergence as compared to θ̂n. The paper is concluded by providing details on
how to conduct inference, e.g. confidence intervals, based on the scalable subagging estimator instead
of the original θ̂n. Some numerical illustrations are presented in the online Supplement.

2 Scalable subsampling distribution estimation

Recall the set of all size b subsamples {Bj , j = 1, . . . , Q}, and re-arrange it so that the first subsamples
are obtained as blocks of consecutive data points, i.e., Bj = (X(j−1)h+1, X(j−1)h+2, . . . , X(j−1)h+b).
Recall that the block size b is an integer in [1, n], and so is h; in particular, h controls the amount of
overlap (or separation) between Bj and Bj+1. If h = 1, then the overlap is the maximum possible; if
h ∼ 0.2 b, then there is an approximate 80% overlap between Bj and Bj+1; if h = b, then there is no
overlap between Bj and Bj+1 but these two blocks are adjacent; finally, if h ∼ 1.2 b, then there is a
block of about 0.2 b data points from the data sequence X1, . . . , Xn that separate the blocks Bj and
Bj+1. In general, b and h are functions of n, but these dependences will not be explicitly denoted.
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The collection of all available block–subsamples of size b, is then {Bj , j = 1, . . . , q} where q =
⌊(n−b)/h⌋+1; here, ⌊·⌋ and ⌈·⌉ denote the floor and ceiling functions respectively. We claim that this
non-random collection is sufficient for effective and computationally feasible subsampling distribution
estimation. To see why, note that subsampling using the aforementioned block–subsamples has been
found to be consistent in the setting where the data sequenceX1, . . . , Xn is a finite stretch of a strong-
mixing, stationary time series; see e.g. Politis and Romano (1994, Section 3.2). Since the i.i.d. case
can be considered as a special case of a stationary time series, the claim follows.

To elaborate, we define the subsample statistics θ̂b,j = Tb(Bj) for j = 1, . . . , q as before, and

construct a new subsampling distribution as Ln,b,h(x) = q−1
∑q

i=1 1{τbg(θ̂b,i − θ̂n) ≤ x}.

Proposition 2.1 Assume Assumption A, and conditions (1) and (3). Also assume that either
h = 1, or that h satisfies

h ∼ c1 b for some constant c1 > 0. (4)

Then, Ln,b,h(x)
P−→ J(x) for all x points of continuity of J .

The Proposition follows from Corollary 3.2 of Politis and Romano (1994) who worked under the
assumption that 1 ≤ h ≤ b; the case where h > b —but still with h = O(b)— can be proven in a
similar way. The essence of the argument is that

ELn,b,h(x) ≈ Jb(x) → J(x) as b → ∞ (5)

where x a point of continuity of J . In addition,

V ar(Ln,b,h(x)) = O(b/n). (6)

Eq. (5) and (6) together with Chebyshev’s inequality imply Ln,b,h(x)
P−→ J(x).

Note that the bound (6) holds true regardless as to whether h = 1 or h satisfies condition (4);
it is just the proportionality constant in O(b/n) that becomes smaller (but is bounded below) as h
decreases. Therefore, for reasons of parsimony and computational tractability, we will not propose
using full-overlap block-subsamples, i.e., the case h = 1, in what follows. Instead we will work under
condition (4), in which case q = O(n/b). Hence, assuming θ̂n can be computed in O(nζ) operations
(for some constant ζ > 0), the construction of Ln,b,h and its quantiles has computational complexity

O(nζ)+O(nbζ−1) = O(nζ) which is the same as computing the statistic θ̂n itself; therefore, we may
call the construction of Ln,b,h under condition (4) as being scalable.

Implementation problems might ensue when ζ > 1 and n is large, but in this case even the
computation of the original statistic θ̂n may be problematic; we will address this issue next.

3 Computability issues

As discussed in the last section, the statistic θ̂n will generally be computable in O(nζ) operations. If ζ
is small, then no issues incur. Unfortunately, examples abound with ζ > 1, making the computability
of θ̂n questionable in the Big Data era. Some examples are as follows:

1. The Xi are univariate, and θ̂n is the sample mean (or median) of X1, . . . , Xn. Then, ζ = 1.

2. The Xi take values in Rd, and θ̂n is the sample mean of X1, . . . , Xn. Then, θ̂n is computable
in O(dn) operations. If d is a constant, then ζ = 1 as above. However, it may be that d grows
with n; if d grows linearly with n, then ζ = 2.
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3. Suppose that Xi = (Yi,Wi) where Yi is the univariate response associated with regressor Wi

that takes values in Rd; this is the standard regression situation. If d is large, then LASSO
regression can be employed; see Tibshirani (1996). A popular method to compute the LASSO
has computational complexity O(d3+d2n) as long as d < n; see Efron et al. (2004). If d grows
linearly with n, e.g., when d ∼ n/2, then ζ = 3.

Remark 3.1 There is a growing body of work dealing with the possibility that the sample size n
is so large that it may not be feasible to compute θ̂n. One branch of this literature is devoted to
‘optimal subsampling’ whose meaning is different than the subsampling-based inference discussed
so far. In a nutshell, if θ̂n is not computable, one can use just one of the subsample statistics θ̂b,i to
estimate θ. The question ‘which one to use’ is tantamount to ‘optimal subsampling’; see Yao and
Wang (2021) for a review. The problem with this approach is that the practitioner is effectivelly
throwing out most of the data. A Divide-and-Conquer alternative is proposed in the next section.

4 Scalable subsampling aggregation

4.1 Computation

Subsample aggregation, also known as subagging, was proposed by Bühlmann and Yu (2002). In the

context of the present paper, the subagging estimator can be written as θ̄b,SA = Q−1
∑Q

i=1 θ̂b,i for
an appropriate choice of b; here, and for the remainder of the paper, we will assume a univariate θ,
i.e., Θ = R, and g(x) = x. Under regularity conditions, Bühlmann and Yu (2002) showed that

Eθ̄b,SA = Eθ̂b,1, and V ar(θ̄b,SA) ≤ (b/n)V ar(θ̂b,1).

Hence, if the Bias of θ̂b,1 is tolerable, subagging yields a welcome variance reduction.
With Big Data it is, of course, infeasible to compute (and average) all Q =

(
n
b

)
subsample statis-

tics. By analogy to the stochastic approximation to Ln,b(x), Zou et al. (2021) proposed the use
of randomly chosen subsamples to compute θ̄b,SA, and provided two algorithms for implementa-
tion under constraints in computer memory. However, as already mentioned, choosing B random
subsamples of size b presents computational difficulties when b and n are large.

Observe that although θ̄b,SA is an average of Q values, the variance is reduced by dividing
by n/b not Q. The reason is that the Q subsamples have typically high overlap; hence their
associated subsample statistics are highly dependent. We can achieve a similar variance reduc-
tion effect by using just the first q subsamples in the ordering described in Section 2, i.e., Bj =
(X(j−1)h+1, X(j−1)h+2, . . . , X(j−1)h+b) for j = 1, . . . , q. We therefore define the scalable subagging

estimator as θ̄b,n,SS = q−1
∑q

i=1 θ̂b,i.

Proposition 4.1 Assume condition (4), and that Eθ̂2n < ∞ for all n. Then,

Eθ̄b,n,SS = Eθ̂b,1, and V ar(θ̄b,n,SS) ≤
2m− 1

q
V ar(θ̂b,1) (7)

where m = ⌈b/h⌉ and q = ⌊(n− b)/h⌋+ 1. If h ≥ b, then V ar(θ̄b,n,SS) = q−1V ar(θ̂b,1).

Proof. Note that Eθ̂b,j = Eθ̂b,1 and V ar(θ̂b,j) = V ar(θ̂b,1) for all j. The Cauchy-Schwarz

inequality yields |Cov(θ̂b,i, θ̂b,j)| ≤ V ar(θ̂b,1) but θ̂b,i is independent of θ̂b,j when |i − j| ≥ m

in which case Cov(θ̂b,i, θ̂b,j) = 0. Plugging these estimates into the expression V ar(θ̄b,n,SS) =

q−2
∑q

i=1

∑q
i=j Cov(θ̂b,i, θ̂b,j) shows (7); θ̂b,1, . . . , θ̂b,q are i.i.d. when h ≥ b, and the result is sharper.⋄
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Remark 4.1 Since q = O(n/b), we can compute θ̄b,n,SS with O(qbζ) = O(nbζ−1) operations, a

significant saving over the O(nζ) needed for θ̂n. Recall the discussion of Remark 3.1 on (i) identifying
the ‘optimal subsample’ denoted by Bj∗ , and then (ii) using as your final estimator the subsample

statistic θ̂b,j∗ . The computational cost of part (ii) is of course O(bζ); if you add to this the nontrivial
computational cost of part (i) —that may require numerical optimization— the overall complexity
may well exceed the O(nbζ−1) needed to compute the scalable subagging estimator θ̄b,n,SS .

4.2 Rate of convergence and choice of b for scalable subagging

If the computational complexity of θ̄b,n,SS is O(nbζ−1), what is to stop us from taking b very small,

even b = 1, to make it O(n)? The answer is the generally nonegligible bias of θ̂b,1 that is inherited
by θ̄b,n,SS as Proposition 4.1 showed. Consider the following three Bias Conditions (BC):

(I) Estimator θ̂n is exactly unbiased, as is the case with linear statistics; see Example 1.4.1 of
Politis et al. (1999). Then, b can be taken to equal one but, of course, scalable subagging is

not needed here as the computational complexity of θ̂n is O(n) already.

(II) Estimator θ̂n is asymptotically unbiased, and its bias is asymptotically negligible even after
multiplication by τn; in other words, the limit law J of Assumption A is centered at zero.

(III) Estimator θ̂n is asymptotically unbiased but its bias does not vanish after multiplication by
τn; in other words, the limit law J of Assumption A is centered at a nonzero value.

Although the subsampling distribution estimator Ln,b,h can work under all above eventualities —
including BC case (III)—, to investigate the rate of convergence of scalable subagging we will work
under the assumption of BC case (II). Note that an estimator falling under BC case (III) could
be analytically debiased —by subtracting from it a consistent estimate of its bias—, allowing the
debiased estimator to be handled under BC case (II). Hence, we formulate the following assumption:

Assumption B. Assume that Eθ̂2n < ∞ for all n, and that τn = nα for some constants γ > α > 0,

C ∈ R− {0}, and σ2 > 0 such that nγ(Eθ̂n − θ) → C, and V ar(τnθ̂n) → σ2 as n → ∞.

In the above, we have simplified eq. (3) by omitting the slowly varying function L(n). Note that

γ > α implies that the bias of θ̂n is negligible even after multiplication by τn as in BC case (II).
Politis (2021) considered the possibility that h/b → ∞ but reasons of efficiency of θ̄b,n,SS point
towards adopting condition (4) as in Section 2. To this end, we will assume:

b ∼ c2n
β and h ∼ c3n

β as n → ∞ for positive constants c2, c3, and constant 0 < β < 1. (8)

The following lemma shows that θ̄b,n,SS can be tuned to have the same (or better) rate of

convergence as compared to θ̂n. We will use the notation an = Θ(dn) to denote ‘exact order’, i.e.,
that there exist constants c, c̄ satisfying c · c̄ > 0, and such that cdn ≤ an ≤ c̄dn.

Lemma 4.1 Assume Assumption B, eq. (8), and α ≤ 1/2. Choose a value of β satisfying

1

1 + 2(γ − α)
≤ β <

1

2(γ − α)
. (9)

(i) MSE(θ̄b,n,SS) = Θ(nβ−1−2αβ) = O(τ−2
n ) where MSE is short for Mean Squared Error.

(ii) If β > 1
1+2(γ−α) , then [Bias(θ̄b,n,SS)]

2 = o
(
V ar(θ̄b,n,SS)

)
, i.e., θ̄b,n,SS falls under BC case (II).
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(iii) If β = 1
1+2(γ−α) , then [Bias(θ̄b,n,SS)]

2 = Θ
(
V ar(θ̄b,n,SS)

)
, i.e., θ̄b,n,SS falls under BC case

(III). Furthermore, the choice β = 1
1+2(γ−α) minimizes the MSE(θ̄b,n,SS), yielding

MSE(θ̄b,n,SS) = Θ(n−2γ/[1+2(γ−α)]) (10)

in which case the optimized rate of convergence of θ̄b,n,SS is nγ/[1+2(γ−α)].

The proof is omitted as straightforward; some details are given in Proposition 4.2 of Politis (2021)
under the simplifying condition h ≥ b. Note that letting β equal the lower bound 1

1+2(γ−α) kills two

birds with one stone: (a) optimizes the rate of convergence of θ̄b,n,SS , and (b) minimizes the compu-

tational complexity in computing θ̄b,n,SS making it O(nbζ−1) = O(n1+β(ζ−1)) = O
(
n1+

(ζ−1)
1+2(γ−α)

)
.

We now discuss some examples:

1. Linear statistics. Consider a linear statistic θ̂n that is represented as θ̂n = n−1
∑n

i=1 G(Xi)

for some appropriate function G. Note that θ̂n estimates θ = EG(X1), and is exactly unbiased
for that. As mentioned under the description of BC case (I), subagging is not needed here

because θ̂n is easily computed. Furthermore, this case can not really fit under the premises of
Lemma 4.1 since Assumption B does not hold; recall that Assumption B implies that θ̂n has
nonzero bias. We can intuit what would happen here by pretending that Assumption B holds
(approximately) with a huge value of γ. Letting γ → ∞ implies that the optimal β tends to

zero. Hence, one would take b = h = 1, reducing θ̄b,n,SS to the original statistic θ̂n.

2. Approximately linear statistics. A statistic θ̂n can be called approximately linear if it
can be represented as θ̂n = n−1

∑n
i=1 G(Xi) + oP (n

−1/2). Then, θ̂n is
√
n–consistent for

θ = EG(X1), i.e., α = 1/2. Examples include the sample median and other sample quantiles,
trimmed means, M -estimators, etc. In many such examples, it may often be verified that the
bias of θ̂n is of order 1/n, i.e., γ = 1. Part (iii) of Lemma 4.1 suggests that the choice β = 1/2
minimizes the MSE(θ̄b,n,SS); with this choice, θ̄b,n,SS is

√
n–consistent as well.

3. Nonparametric function estimators. Consider the case where θ represents the value of
function f at a point of interest; the function f can be a probability density, spectral density,
or other function that should be estimated in a nonparametric setting. Let θ̂n denote a kernel-
smoothed estimator of θ, and suppose that a nonnegative kernel is used. In this case, the
MSE–optimal bandwidth is Θ(n−1/5). However, this bandwidth choice brings θ̂n under the
realm of BC case (III), and the premises of Lemma 4.1 do not apply. As an experiment,

consider a degree of undersmoothing in constructing θ̂n. To fix ideas, suppose the bandwidth
is chosen to be Θ(n−1/4) instead, yielding Bias(θ̂n) = O(n−1/2) and V ar(θ̂n) = Θ(n−3/4);
in this case, α = 3/8 and γ = 1/2. According to Lemma 4.1, β should be optimally chosen to
equal 0.8; hence, the rate of convergence of θ̄b,n,SS becomes n2/5. This rate is not only faster

than the rate of θ̂n that used the suboptimal bandwidth Θ(n−1/4); it is actually the fastest rate
achievable by any estimator that uses a nonnegative kernel with its associated MSE–optimal
bandwidth. Nevertheless, θ̄b,n,SS can be computed faster than θ̂n, and may thus be preferable.

The above example opens up the possibility that θ̄b,n,SS may be more efficient than θ̂n (on which it
is based). Such “super-efficiency” was first pointed out by Banerjee et al. (2019) in the setting of
isotonic regression but it is a more general phenomenon, associated with harder estimation problems.
Some numerical illustrations to that effect are presented in the online Supplement.
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4.3 Inference beyond point estimation

Having established that θ̄b,n,SS is a consistent estimator whose rate of convergence towards θ is

fast (and sometimes faster than that of θ̂n), the question now is how to conduct inference, e.g.,

confidence intervals, hypothesis tests, etc. based on θ̄b,n,SS . If we take h ≥ b, then θ̂b,1, . . . , θ̂b,q are

i.i.d. but not a simple sequence of random variables; to see that, note that the value of θ̂b,1 changes

with b (which increases with n). Rather, θ̂b,1, . . . , θ̂b,q can be thought as the nth row of a triangular
array with i.i.d. entries, and common distribution given (approximately, and after centering and

standardizing) by Jb. Since θ̄b,n,SS is the sample mean of θ̂b,1, . . . , θ̂b,q, a Central Limit Theorem
(CLT) for triangular arrays —such as Theorem B.O.1 of Politis et al. (1999)—is helpful.

Corollary 4.1 Assume the premises of Lemma 4.1. Also assume that there exist positive numbers
ϵ and ∆ such that E|θ̂n|2+ϵ ≤ ∆ < ∞ for any n. Then, for some σ2

0 > 0, we have

κn

(
θ̄b,n,SS − θ

) L
=⇒ N(Cβ , σ

2
0) as n → ∞ (11)

where κn = n
−1+β−2αβ

2 and
L

=⇒ denotes convergence in law. Furthermore: (i) if β > 1
1+2(γ−α) , then

Cβ = 0; (ii) if β = 1
1+2(γ−α) , then Cβ = C as defined in Assumption B.

If h < b, then θ̂b,1, . . . , θ̂b,q are not independent; rather, they are m-dependent with m = ⌈b/h⌉ as
in Proposition 4.1 but Theorem B.O.1 of Politis et al. (1999) still applies. If h ≥ b, then σ2

0 = σ2 as
defined in Assumption B. Hence, if β > 1

1+2(γ−α) , then all that is needed is a consistent estimator of

σ2; this is easy to obtain as the sample variance of the nth row of the triangular array, i.e., letting

σ̂2 = b2αq−1
∑q

i=1

(
θ̂b,i − θ̄b,n,SS

)2

. Therefore, when h ≥ b, an approximate 95% confidence interval

for θ under case (i) would be θ̄b,n,SS ± 1.96 σ̂ · n
1−β+2αβ

2 .
However, case (ii) of Corollary 4.1 is more interesting since it ensures the fastest rate of conver-

gence of θ̄b,n,SS . Here, the nontrivial asymptotic bias of the distribution of θ̄b,n,SS presents some
difficulties at first inspection. Nevertheless, subsampling comes again to the rescue since eq. (11)
shows that θ̄b,n,SS has a well-defined asymptotic distribution; the fact that the latter is not cen-
tered at zero is immaterial. In other words, θ̄b,n,SS satisfies Assumption A with θ̄b,n,SS in place of

θ̂n. Hence, the scalable subsampling construction of Section 2 can be applied to yield a consistent
estimate of the distribution of estimator θ̄b,n,SS ; see Remark 4.3 for details on iterated subsampling.

Remark 4.2 (Connections with distributed inference.) The case h = b, i.e., splitting the
sample into q non-overlapping parts, is closely related to the classical notion of q-fold cross-validation,
as well as the more recent notion of Divide-and-Conquer (DaC) methods; see Jordan (2013). To
elaborate, the scalable subagging estimator θ̄b,n,SS has been studied before in the following DaC
distributed inference contexts (all with h = b): U-statistics by Lin and Xi (2010); generalized linear
models by Chen and Xie (2014); M-estimators by Zhang, Duchi and Wainwright (2013); and a certain
class of symmetric statistics (that includes L-statistics and smoothed functions of the sample mean)
by Chen and Peng (2021). Note also that Bradic (2016) employed subagging using non-overlapping
blocks of data, and applied it to variable selection in large-scale regression. The current section is
meant to serve many purposes. One is to show that these ideas are universally applicable under
minimal assumptions, such as Assumption B; for example, the asymptotic normality results of Chen
and Peng (2021) actually follow from our Corollary 4.1 simply by checking its premises. Furthermore,
it is important to note that the usefulness of scalable subagging and DaC distributed inference
extends well beyond the realm of asymptotically linear,

√
n–consistent statistics that have been
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considered so far; see our Section 4.2 including the example on nonparametric function estimation.
Finally, the interplay of the tuning parameters h and b opens up interesting possibilities, e.g., the
possibility that θ̄b,n,SS has a faster rate of convergence than θ̂n itself; see the aforementioned paper
by Banerjee et al. (2019) who also proved a CLT like eq. (11) under a different set of assumptions.

4.4 Weakly dependent data

All subsampling constructions in this paper, including the scalable subsampling distribution Ln,b,h(x)
and scalable subagging estimator θ̄b,n,SS , remain valid if there is (weak) dependence in the data,
i.e., if X1, . . . , Xn are a stretch of a strictly stationary, strong mixing time series. The reason is that
the choice of block-subsamples described in Section 2 and used throughout the paper is actually the
choice that is recommended in order to subsample time series; see e.g. Politis and Romano (1994).
Hence, all results in Section 4.2 remain true as stated in the case where X1, . . . , Xn are weakly
dependent but some of the discussion in Section 4.3 may require a little tweak.

To see why, note that if h = b, then θ̂b,1, . . . , θ̂b,q will be independent only if the data X1, . . . , Xn

are independent. IfX1, . . . , Xn are stationary and strong mixing, we can still ensure that θ̂b,1, . . . , θ̂b,q
are approximately independent if we require h − b → ∞, e.g., h = b + ⌊

√
b⌋; this would ensure

that blocks Bj and Bj+1 are separated by about
√
b data points, rendering them approximately

independent as b increases with n. However, Theorem B.O.1 of Politis et al. (1999)—on which

Corollary 4.1 was based—holds true even when θ̂b,1, . . . , θ̂b,q are weakly dependent, e.g., when h ∼ c1b
with c1 ≤ 1, and so does subsampling distribution estimation (based on block-subsamples).

Corollary 4.2 Assume X1, . . . , Xn is a stretch of a strictly stationary time series with exponentially
decreasing strong mixing coefficients. Then, Lemma 4.1 and Corollary 4.1 remain true as stated.

Note that if h− b → ∞, then σ2
0 = σ2 as defined in Assumption B. If h ∼ c1 b with c1 ≤ 1, and also

to work under case (ii) of Corollary 4.1, we need the aforementioned idea of iterated subsampling.

Remark 4.3 (Iterated subsampling) Let b = ⌊c2nβ⌋ and apply scalable subsampling aggre-
gation (SSA) to X1, . . . , Xn to compute θ̄b,n,SS . (a) Let b′ = ⌊c2bβ⌋ and apply SSA to the b
elements of Bj , i.e., as if Bj where the only data at hand, to produce the jth pseudo-SSA-statistic

θ̄
(j)
b′,b,SS . (b) Repeat part (a) for j = 1, . . . , q to yield the subsampling distribution L̃b′,b,SS(x) =

q−1
∑q

j=1 1{κb

(
θ̄
(j)
b′,b,SS − θ̄b,n,SS

)
≤ x}. Then, under the premises of Corollary 4.2, we have

sup
x

|L̃b′,b,SS(x)− P{κn

(
θ̄b,n,SS − θ

)
≤ x}| P−→ 0 (12)

allowing for the construction of confidence intervals for θ based on the quantiles of L̃b′,b,SS(x). The
latter is closely related to the notion of convolved subsampling; see Tewes et al. (2019).

Finally, note that an analog of Corollary 4.2 can also be formulated when the strong mixing
coefficients only decay polynomially fast. In that case, however, the ϵ appearing in the moment
assumption of Corollary 4.1 can not be any positive number, i.e., it can not be taken arbitrarily
close to zero. Rather, the minimum value of ϵ allowed would be dictated by the polynomial rate of
decay of strong mixing; see the assumptions of Theorem B.O.1 of Politis et al. (1999).
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