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Summary

Over the last 35 years, several bootstrap methods for time series have been
proposed. Popular time domain methods include the block-bootstrap, the sta-
tionary bootstrap, the linear process bootstrap, etc.; subsampling for time se-
ries is also available, and is closely related to the block-bootstrap. the fre-
quency domain bootstrap (FDB) has been performed either by resampling the
periodogram ordinates or by resampling the ordinates of the Discrete Fourier
Transform (DFT). The paper at hand proposes a novel construction of subsam-
pling the DFT ordinates, and investigates its theoretical properties and realm of
applicability. Numerical studies show that the new method performs compara-
bly to the FDB for linear spectral means and ratio statistics, while at the same
time yielding significant computational savings as well as numerical stability.
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1 Introduction

Efron (1979) developed the bootstrap for independent and identically distributed
(i.i.d.) data, and paved the way for practical nonparametric statistics in the
modern era. Soon after, practitioners were able to apply resampling ideas in a
variety of non-i.i.d. situations including the interesting case of dependent data.

Time series analysis has a time domain and a frequency domain aspect to
it. Consequently, proposals for resampling time series can be in either of these
two flavors. There have been several proposals with regards to time domain
resampling plans; these include the block-bootstrap in its many variations, the
stationary bootstrap, the linear process bootstrap, etc.; see Chapter 12 of McEl-
roy and Politis (2020) for a concise description. Subsampling for time series is
closely related to the block-bootstrap—see Politis et al. (1999), Lahiri (2003a),
or Kreiss and Paparoditis (2024).

Franke and Härdle (1992) proposed resampling the periodogram ordinates,
i.e., a frequency-domain bootstrap. The motivation behind this approach is
that periodogram ordinates at different Fourier frequencies are approximately
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independent. Research on frequency-domain bootstrap was pursued by several
researchers including Janas and Dahlhaus (1994), Dahlhaus and Janas (1996),
Kreiss and Paparoditis (2003), Meyer et al. (2020), and Yu et al. (2023).

Interestingly, there is an early unpublished work by Hurvich and Zeger
(1987) who proposed resampling the ordinates of the Discrete Fourier Transform
(DFT), as they are also approximately independent. Actually, the aforemen-
tioned (approximate) independence of periodogram ordinates is a consequence
of the (approximate) independence of DFT ordinates, since the periodogram is
a function of the DFT. Hence, resampling the DFT can be thought of as a more
fundamental construction; a rigorous development of DFT-based bootstrap can
be found in Kirch and Politis (2011).

Since resampling the DFT is a fundamental construction, the question of
possibly subsampling the DFT presents itself; this is the subject of the paper
at hand. The basic idea is to divide the DFT (based on a sample of size T ) into
q vectors of length b, each consisting of the DFT ordinates at frequencies sepa-
rated by q/T . Each such vector is asymptotically independent of one another,
and distributed as a DFT vector based on a sample of size b. If the statistic
at hand is computable based on the DFT alone, it could be re-computed on
the smaller DFTs, and an empirical distribution of such subsample statistics,
appropriately centered and normalized, would estimate the original statistic’s
sampling distribution.

The above construction will be termed skip-sampling of the DFT because of
the process of skipping over some frequencies in putting together the subsam-
ple DFT vectors. The following section gives the precise construction as well
as some background on the properties of the DFT. Some theoretical results on
skip-sampling of the DFT are given in Section 3, while applications to spectral
means and ratio statistics are given in Section 4; all proofs are deferred to Ap-
pendix A. Simulation results on the finite-sample performance of skip-sampling
are reported in Section 5; some additional simulations are given in Appendix B.
Finally, some useful results on DFT symmetries are given in Appendix C.

2 Problem setup

Let X1, . . . , XT be an observed sample from a strictly stationary time series
{Xt} defined on a probability space with probability measure P , and set X =
[X1, . . . , XT ]

′
. Time series analysis in the frequency domain hinges on the Dis-

crete Fourier Transform (DFT), which maps the data vector X to a vector with
(approximately) independent entries. To define the DFT, let [·] denote integer
part, and consider the set of Fourier frequencies

ΛT = {λ` = 2π`/T, where ` = [T/2]− T + 1, . . . , [T/2]};

this index range corresponds to −[T/2], . . . , [T/2] when T is odd, or −[T/2] +
1, . . . , [T/2] when T is even. Define a T × T unitary matrix Q (i.e., Q−1 = Q∗,
the conjugate transpose) with complex-valued entries Qjk = T−1/2 eijλ[T/2]−T+k

for j, k = 1, . . . , T . The DFT vector (see Proposition of 7.2.7 of McElroy and

Politis (2020) for more details) is defined as X̃ = Q∗X, which means that the
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jth component of the DFT vector is

X̃j = T−1/2
T∑
k=1

e−ikλ[T/2]−T+jXk. (1)

The DFT map is invertible, because clearly X = Q X̃.
We now provide details on the novel construction that is at the heart of this

paper’s methodology. For simplicity, consider positive integers q and b such that
b q = T ; if such a choice is not feasible, then one could let q = [T/b], and work
as if the data were just X1, . . . , Xbq, i.e., discard the data points Xbq+1, . . . , XT ,
and re-define T to equal b q. Define sub-components of the DFT vector by

X̃(j) = [X̃j , X̃q+j , . . . , X̃(b−1)q+j ]
′

(2)

for j = 1, . . . , q. In terms of the entire DFT, this operation can be expressed as
transforming X̃ into a b×q matrix such that the jth column is X̃(j), and the rows
correspond to the Fourier frequencies ΛT,` = {λ[T/2]−T+(`−1)q+1, . . . , λ[T/2]−T+`q}
for ` = 1, . . . , b. Because of the construction of keeping every qth Fourier fre-
quency and skipping over the intervening ones, this operation can be called
skip-sampling on the DFT, and X̃(j) is called the jth skip-sample DFT; it is
a complex vector of length b, obtained by evaluating the DFT only at Fourier
frequencies λ[T/2]−T+(`−1)q+j , where ` = 1, . . . , b.

Recall that the DFT X̃ contains all the information carried in the sample
X, since we can re-create X as Q X̃. However, the jth skip-sample DFT X̃(j)

contains only a part of the information carried by the sample X; putting all
the skip-sample DFTs X̃(j) together for j = 1, . . . , q, we can capture the whole
information again. In this sense, working with the skip-sample DFTs X̃(j) for
j = 1, . . . , q can be considered a form of subsampling in the frequency domain.
This should be contrasted to the usual subsampling of a time series in the time
domain, which is done by carving the sample X1, . . . , XT into smaller blocks,
each consisting of b consecutive data points; see Politis and Romano (1994).

We can think of the jth skip-sample DFT X̃(j) as a smaller proxy for the
entire DFT X̃. These proxies are asymptotically independent from one another
but this independence property is not contingent on the fact that we skip along
by exactly q frequencies; we could imagine a different organization of the compo-
nents of X̃. Choosing the jth element of the set ΛT,`, namely λ[T/2]−T+(`−1)q+j ,
to represent the whole subset ΛT,` will be called regular-draw skip-sampling.
However, we could instead have used another of the q elements of ΛT,` as its
representative. Having q choices of representative for each set ΛT,` would lead
to S = qb possible skip-sample statistics; we will call this scheme, whereby we
use all S skip-sample statistics, total-draw skip-sampling.

Total-draw skip-sampling is, in general, not computationally feasible, as it
involves the computation of qb DFT ordinates with b and q diverging. However,
we could construct an alternative scheme, wherein one member of each row
is selected to form the first skip-sample DFT, followed by the second skip-
sample DFT, thereby drawing one member from each row, ensuring these draws
are distinct from the first skip-sample DFT. Such a mechanism will also have
the asymptotic independence property. The key is that each skip-sample has
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one element from each row, which ensures that the frequencies are dispersed
throughout [−π, π], thereby avoiding estimation bias as discussed more below.

One such variant of regular-draw skip-sampling selects a random frequency
in each row; we will call this random-draw skip-sampling, and denote it as

X̃(∗j) = [X̃J1 , X̃q+J2 , . . . , X̃(b−1)q+Jb ]
′

where J1, . . . , Jb are i.i.d. Uniform taking values in {1, . . . , q}. We can now
generate a large number (say B) such random-draw skip-sample DFTs so that

the set {X̃(∗j) for j = 1, . . . , B} is sufficient to approximate the set of total-
draw skip-sample DFTs. This Monte Carlo construction is analogous to the
stochastic approximation to the standard time domain subsampling; see Ch.
2.4 of Politis et al. (1999). The randomized strategy can produce many more
skip-sample statistics, i.e., B instead of the q regular-draw skip-sample statistics;
the result is more granularity in our estimates of the target distribution, which
is practically useful as our simulation experiments confirm. Section 3 studies in
detail the new skip-sampling methodology in its three variants: regular-draw,
total-draw, and random-draw skip-sampling.

Although neither X̃(j) nor X̃(∗j) will necessarily possess the Symmetry Prop-
erty (see Definition C.1 in Appendix C), by employing the techniques of Remark
C.1 we can ensure that applying the b-dimensional version of matrix Q to the
symmetrized skip-sample DFT (so as to invert the DFT and bring us back to
the time domain) will yield a real-valued vector of length b; this can be useful
for statistics that are easier to formulate in the time domain. However, there is
an interesting class of statistics that are defined in the frequency domain; two
prime examples are discussed in Section 4.

3 Skip-sampling: methodology and key results

3.1 Framework

Let X1, X2, . . . , XT be an observed sample from a strictly stationary time series
{Xt} with mean µ and absolutely summable autocovariance γk = Cov(X0, Xk);
the spectral density f(λ) =

∑∞
−∞ γke

−ikλ is well-defined and continuous on
[−π, π], i.e., belongs to C[−π, π]. A crude estimate of f(λ) is the periodogram

IT (λ) =
∑T−1
k=−T+1 γ̂ke

−ikλ, where the sample autocovariance is defined as γ̂k =

T−1
∑T−|k|
t=1 (Xt − X̄)(Xt+|k| − X̄), and X̄ = T−1

∑T
t=1Xt is the sample mean.

When evaluated at a (nonzero) Fourier frequency λ` = 2π`/T , the peri-
odogram equals the squared magnitude of the DFT. To see that, note the iden-
tity IT (λ) = T−1|

∑T
t=1(Xt − X̄)e−itλ|2. One of the columns of the matrix

Q consists of constant elements, and the other columns are orthogonal to it.
Hence, IT (0) = 0, and when ` 6= 0 we have IT (λ`) = T−1|

∑T
t=1Xte

−itλ` |2.
Let θ be a real-valued parameter of interest; extensions to multivariate pa-

rameters are straightforward. Let θ̂T be an estimator of θ based on the data
X1, . . . , XT . The statistic θ̂T is a function of the data vector X; since the latter
is in one-to-one correspondence with the DFT vector X̃ we may write

θ̂T = HT
(
X̃
)
, (3)
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for some functionHT mapping CT to R. We will assume the following condition:

Assumption (A): For some nondegenerate limit distribution J , we have aT (θ̂T−
θ) converges in law to J as T → ∞, where aT = T δL(T ) for some δ > 0 and
some slowly varying function L.

Letting JT (x) = P [aT (θ̂T −θ) ≤ x], Assumption (A) implies that JT (x)→ J(x)
for all points x at which J is continuous.

3.2 Regular-draw skip-sampling

We can now define the jth regular-draw skip-sample statistic

θ̂
(j)
b = Hb

(
X̃(j)

)
(4)

for j = 1, . . . , q. The idea is that θ̂
(j)
b will have the same asymptotic distribu-

tion as θ̂
(1)
b when b → ∞. Furthermore, under standard conditions (see, e.g.

Lahiri (2003b)), the DFT ordinates evaluated at different Fourier frequencies
will be asymptotically independent; this would render the skip-sample statistics

θ̂
(1)
b , . . . , θ̂

(q)
b (for fixed q) approximately independent as well.

We formulate these stylized facts in the following assumption, which operates
under the condition

b

T
+

1

b
→ 0 as T →∞. (5)

Recall that q = T/b; hence, eq. (5) implies that q →∞.

Assumption (A∗): Under condition (5) the following are true: (a) For any

j, P [ab(θ̂
(j)
b − θ) ≤ x] − Jb(x) = o(1) for all points x at which J is con-

tinuous; and (b) for any j 6= k, and any bounded functions g1, g2, we have

Cov(g1(θ̂
(j)
b ), g2(θ̂

(k)
b ))→ 0.

The verification of Assumption (A∗) generally requires some further knowledge
about the statistic and the time series dynamics. In Section 4 we establish the
joint asymptotic normality and independence of distinct skip-sample statistics in
the case of linear spectral mean statistics, from which Assumption (A∗) follows.

The quantity aT (θ̂T − θ) is sometimes called a root. Our core result is a
consistency theorem for skip-sampling which gives conditions under which the

empirical distribution of the regular-draw skip-sample roots ab(θ̂
(j)
b − θ̂T ) for

j = 1, . . . , q can be used to approximate the distribution of the original root.
To develop it, define the two regular-draw skip-sampling distributions:

Ub,T (x) = q−1
q∑
j=1

1{ab(θ̂(j)b −θ) ≤ x} and Lb,T (x) = q−1
q∑
j=1

1{ab(θ̂(j)b −θ̂T ) ≤ x},

where 1 denotes the indicator function. Of the two skip-sampling distributions,
Ub,T is termed an oracle, as it requires knowledge of θ for its construction. By
contrast, Lb,T is a bona fide statistic that can be used for estimation purposes.
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Theorem 3.1 Assume condition (5) and Assumptions (A) and (A∗). Then,
Lb,T (x) converges in probability to J(x) for all points x at which J is continuous.

Remark 3.1 In many situations, the limit law J will be N(0, v). In this case,
it may be of interest to use skip-sampling to estimate the asymptotic variance
v, and use the normal tables (instead of the quantiles of the skip-sampling
distribution Lb,T ) in order to construct confidence intervals and tests. The
regular-draw skip-sampling estimator of v is

v̂b =
a2b
q

q∑
j=1

(θ̂
(j)
b −

¯̂
θb)

2, (6)

where
¯̂
θb = q−1

∑q
j=1 θ̂

(j)
b . The consistency of v̂b requires some different condi-

tions that are outlined in Corollary 3.1 below. Such conditions can be verified
for the two prominent types of periodogram-based statistics, namely spectral
means and ratio statistics; see Sections 4.2 and 4.3. Additional examples of po-
tential applicabilty of frequency domain resampling (including skip-sampling)
are given in Corollary 3.1 of Bertail and Dudek (2021) and its related discussion.

For the next result, we strengthen (5) to the following condition:

b

T
+

1

b
+
a2b
T
→ 0 as T →∞. (7)

Corollary 3.1 Assume Assumption (A) with supT Eθ̂
4
T <∞, and a2TVar[θ̂T ]→

v > 0 as T → ∞. Let b be a sequence satisfying (7), and assume that, for any
i, j = 1, . . . , q and i 6= j, the following set of assumptions holds:

E[θ̂
(j)
b ] = θ + o(a−1b )

a2bVar[θ̂
(j)
b ] = v + o(1)

Cov[θ̂
(i)
b , θ̂

(j)
b ] = O(T−1).

(8)

Further assume that when i 6= j,

Cov
{
a2b(θ̂

(i)
b − θ)

2, a2b(θ̂
(j)
b − θ)

2
}

= o(1). (9)

Then, v̂b converges in probability to v as T →∞.

Remark 3.2 The validity of assumption (9) can be motivated by the asymp-

totic independence of θ̂
(i)
b and θ̂

(j)
b . Moreover, the set of assumptions (8) implies

a2bE(θ̂
(i)
b −θ)2 = v+o(1). Hence, by Markov’s inequality, a2b(θ̂

(i)
b −θ)2 = v+oP (1),

implying that
[
a2b(θ̂

(i)
b − θ)2 − v

] [
a2b(θ̂

(j)
b − θ)2 − v

]
= oP (1). Eq. (9) can be be

viewed as a stronger version of this result. In Section 4 we provide a verification
of (9) in the case of spectral mean statistics.
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3.3 Total-draw and random-draw skip-sampling

There are S = qb possible total skip-samples. Order them in an arbitrary
way and denote the jth skip-sample by X̃(]j) where j = 1, . . . , S. Consider a
pair of total-draw skip-samples, say X̃(]j) and X̃(]k), and suppose they have r
DFT components in common where 0 ≤ r ≤ b. The number of such pairs is
S(q − 1)

b−r
b!/(r!(b− r)!); there are S choices for the first DFT vector, there is

a choice of r out of b components of the second DFT vector that are in common
with the first vector, and for each of the remaining b− r components there are
q − 1 possible choices. Summing over r = 0, . . . , b yields the total number of
pairs, S2. As in eq. (4), we define the jth total-draw skip-sample statistic as

θ̂
(]j)
b = Hb

(
X̃(]j)

)
(10)

for j = 1, . . . , S. We also generalize Assumption (A∗) to the following:

Assumption (A]): Under condition (5) the following are true: (a) For any

j, P [ab(θ̂
(]j)
b −θ) ≤ x]−Jb(x) = o(1) for all points x at which J is continuous; and

(b) for any bounded functions g1, g2, if θ̂
(]j)
b and θ̂

(]k)
b have r DFT components

in common (for r = 0, . . . , b), then Cov(g1(θ̂
(]j)
b ), g2(θ̂

(]k)
b )) = O(r/b).

Assumption (A]) implies Assumption (A∗), since regular-draw skip-sample statis-
tics are a particular sub-class of total-draw skip-sample statistics, corresponding
to r = 0 shared DFT components. Define the two total-draw skip-sampling dis-
tributions, the oracle and the bona fide statistic, respectively as

U ]b,T (x) = S−1
S∑
j=1

1{ab(θ̂(]j)b −θ) ≤ x} and L]b,T (x) = S−1
S∑
j=1

1{ab(θ̂(]j)b −θ̂T ) ≤ x}.

As with Theorem 3.1, the consistency of L]b,T (x) follows from that of U ]b,T (x).

Theorem 3.2 Assume condition (5) and Assumptions (A) and (A]). Then,

L]b,T (x) converges in probability to J(x) for all points x at which J is continuous.

Remark 3.3 Analogously to Remark 3.1, we may define the total-draw skip-
sampling estimator of the large-sample variance v as

v̂]b =
a2b
S

S∑
j=1

(θ̂
(]j)
b − ¯̂

θ
]

b)
2, (11)

where
¯̂
θ
]

b = S−1
∑S
j=1 θ̂

(]j)
b . An analogue of Corollary 3.1 can now be formulated

and proven. For brevity we omit further discussion here but show in Section 4
the consistency of the total-draw estimator v̂]b for linear spectral means.

Finally, recall that the computation of L]b,T (x) is in general infeasible as

S = qb can be prohibitively large. As discussed earlier, we may resort to a
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stochastic approximation. To elaborate, let B be a large positive integer, and
select X̃(∗1), . . . , X̃(∗B) at random (with replacement) from the set {X̃(]j), j =

1, . . . , S}. Then, let θ̂
(∗j)
b = Hb(X̃(∗j)) for j = 1, . . . , B, and define the random-

draw skip-sampling distribution L∗b,T (x) = B−1
∑B
j=1 1{ab(θ̂

(∗j)
b − θ̂T ) ≤ x}.

Corollary 3.2 Assume the conditions of Theorem 3.2, and B →∞ as T →∞.
Then, L∗b,T (x) converges in probability to J(x) for all points x at which J is
continuous.

Corollary 3.2 remains true even if the sampling of the X̃(∗j) is performed without
replacement; see the proof of Corollary 2.4.1 of Politis et al. (1999).

Remark 3.4 Define the random-draw skip-sampling variance estimator

v̂∗b =
a2b
B

B∑
j=1

(θ̂
(∗j)
b − ¯̂

θ
∗
b)

2 (12)

where
¯̂
θ
∗
b = B−1

∑B
j=1 θ̂

(∗j)
b . It is easy to see that if v̂]b is consistent for the

large-sample variance v, then so is v̂∗b as long as B →∞.

4 Application to statistics defined in the fre-
quency domain

4.1 Framework

Throughout this section, suppose that {Xt} is a stationary non-Gaussian pro-
cesses. In many cases of interest, the parameter θ is a functional of the spectral
density f , i.e., θ = G(f) for some G : C[−π, π] → R. Recall that the peri-
odogram is asymptotically unbiased but inconsistent for f(λ), as its variance
does not tend to zero; see Chapter 9 of McElroy and Politis (2020). However,
there are several situations where θ can be consistently estimated using the peri-
odogram as a basis. In this case, our statistic θ̂T may be defined as a functional
of IT , i.e.,

θ̂T = GT (IT ) (13)

where, for each T , we have a functional GT : C[−π, π] → R. In simpler cases,
the functional GT might not depend on T , as in the case of spectral means and
ratio statistics discussed in detail in Sections 4.2 and 4.3.

Since the periodogram evaluated at (nonzero) Fourier frequencies equals the
squared magnitude of the DFT, it is apparent that the statistic (13) is a special
case of the general statistic (3). In terms of feasible statistical computing, we will

further assume, as it is invariably the case, that the statistic θ̂T is computable
based on the periodogram evaluated just on the Fourier frequencies.
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4.2 Spectral means

Consider a bounded function g(λ) of domain [−π, π] that has bounded variation,

and denote 〈g〉 = (2π)
−1 ∫ π

−π g(λ) dλ. A linear spectral mean (Dahlhaus, 1985)
is a parameter of the form

θ = 〈g f〉 =
1

2π

∫ π

−π
g(λ) f(λ) dλ. (14)

The prime example of a linear spectral mean is the autocovariance at lag k,
where g(λ) = eikλ.

As already mentioned, the periodogram is asymptotically unbiased but in-
consistent for f(λ), as its variance does not tend to zero. However, plugging in
IT instead of f in eq. (14) yields a consistent estimator of the spectral mean,
since integration works like summation in terms of reducing the variance. As
a matter of fact, the integral in eq. (14) is typically approximated by a Rie-
mann sum over the Fourier frequencies. Consequently, a linear spectral mean θ
satisfying eq. (14) is practically estimated by

θ̂T = T−1
∑
n∈RT

g(2πn/T ) IT (2πn/T ), (15)

where we define the index range RT = {[T/2]− T + 1, . . . , [T/2]}.
The recent paper by Yu et al. (2023) focuses on classical time domain sub-

sampling, which is consistent for arbitrary statistics evaluated on stationary time
series data under α-mixing; see Politis and Romano (1994). While employing
the classical block-subsampling method, Yu et al. (2023) manage to relax the
α-mixing and strict stationarity conditions when the statistic is a spectral mean;
they also work out the moments of subsampling statistics, and make compar-
isons to the hybrid method of Meyer et al (2020). Our skip-sampling method,
in contrast, is established upon summability conditions on autocumulants.

If the kth moment (for k ≥ 2) exists, then the order k autocumulant function
is defined as γh1,...,hk−1

= cum{Xt+h1
, Xt+h2

, . . . , Xt+hk−1
, Xt}, and we can

formulate an autocumulant condition as in Taniguchi and Kakizawa (2000):

Assumption (Bk): for each j = 1, . . . , k − 1 we have∑
h1∈Z

· · ·
∑

hk−1∈Z
(1 + |hj |) |γh1,...,hk−1

| <∞.

For a process satisfying Assumption (Bk) for some k ≥ 4 the tri-spectral density

F (ω1, ω2, ω3) =
∑
h1∈Z

∑
h2∈Z

∑
h3∈Z

γh1,h2,h3
exp{−i(h1ω1 + h2ω2 + h3ω3)}

is well-defined. Moreover, if Assumption (Bk) holds for all k ≥ 2, then Theo-
rem A.1 of McElroy and Roy (2022) shows that, as T →∞,

T 1/2
(
θ̂T − θ

)
converges weakly to N

(
0, 〈g g? f2〉+ 〈〈g g F 〉〉

)
. (16)
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In the above, we have used the short-hand g?(λ) = g(λ) + g](λ), where g] is the
reflection of g about the y-axis, and we have denoted

〈〈g g F 〉〉 =
1

(2π)
2

∫ π

−π

∫ π

−π
g(λ) g(ω)F (λ,−λ, ω) dλdω.

Dahlhaus (1985) proved eq. (16) for linear processes. Working under Assump-
tion (Bk) allows us to go beyond the setting of linearity.

Recall from the discussion following (2) that the frequencies involved in X̃(j)

are λ[T/2]−T+(`−1)q+j for ` = 1, . . . , b. Hence, evaluating the linear spectral
mean on the jth regular-draw skip-sample DFT yields

b−1
b∑
`=1

g(λ[b/2]−b+`) IT (λ[T/2]−T+(`−1)q+j). (17)

We can rewrite (17) to more closely resemble (15): it is easy to show that
[T/2] = [b/2]q+ [q/2]1{b or T is odd}, and therefore [T/2]− T + (`− 1)q+ j =
([b/2] − b + `)q + j̃ for ` = 1, . . . , b, where j̃ = j − q + [q/2]1{b or T is odd}.
Using nq/T = n/b, (17) equals b−1

∑
n∈Rb

g(2πn/b) IT (2πn/b + 2πj̃/T ) with

Rb = {[b/2] − b + 1, . . . , [b/2]}. The displacement by 2πj̃/T means that the
periodogram is no longer an even function of n (unless j̃ = q), so the asymptotic
variance has no contribution from g]. In order to correct this, we symmetrize
the periodogram by replacing j̃ by −j̃ when n < 0; making this change (and
dropping the n = 0 term) suggests the definition of the jth regular-draw skip-
sample statistic

θ̂
(j)
b = b−1

[b/2]∑
`=1

g?(2π`/b) IT (2π`/b+ 2πj̃/T ). (18)

Next, we summarize some moment properties of these skip-sample statistics.

Theorem 4.1 Assume that {Xt} is strictly stationary and satisfies Assumption
(Bk) for k = 2, . . . , 8. Consider a linear spectral mean θ satisfying eq. (14), and
some fixed bounded function g(λ) having bounded variation. Let b be a sequence
satisfying (5). Then, for any j = 1, . . . , q, we have

E[θ̂
(j)
b ] = θ +O(b−1) +O(T−1)

Var[θ̂
(j)
b ] = b−1 〈g g? f2〉+ T−1 〈〈g g F 〉〉+O(T−2) +O(b−2) +O(b−1T−1).

Also, for i, j = 1, . . . , q and i 6= j, we have

Cov
(
θ̂
(i)
b , θ̂

(j)
b

)
= O(T−1); Cov

(
θ̂
(i)
b

2
, θ̂

(j)
b

)
= O(T−1); Cov

(
θ̂
(i)
b

2
, θ̂

(j)
b

2)
= O(T−1).

Denote the left-hand-side of (16) by the root ST (θ) = T 1/2 (θ̂T−θ). As a con-

sequence of Theorem 4.1, the jth oracle skip-sample root S
(j)
T (θ) = b1/2 (θ̂

(j)
b −θ)

has asymptotic variance

〈g g? f2〉+ (b/T ) 〈〈g g F 〉〉. (19)
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Theorem 4.1 allows us to take advantage of the avenue suggested by Remark
3.1, i.e., use the skip-sampling estimator of the asymptotic variance of eq. (16),
and then use the normal tables for inference. Here the rate aT = T 1/2. Letting
b = o(T 1/2) to satisfy (7), Corollary 3.1 is applicable as long as assumption (9) is
verified; but this follows from the three asymptotic covariances of Theorem 4.1.

However, there is an additional issue: since b/T → 0, the second term of (19)
asymptotically drops out, which is undesirable in terms of capturing the variance
given in (16). To elaborate, for roots such that 〈〈g g F 〉〉 = 0 the asymptotic

variance of S
(j)
T (θ) is correct, but otherwise must be adjusted to account for the

non-trivial contribution from the tri-spectrum. Whenever 〈〈g g F 〉〉 = 0, we will
say the asymptotic distribution (16) is tri-spectrum free.

Corollary 4.1 Assume the assumptions of Theorem 4.1 and b = o(T 1/2). Then
the skip-sampling estimator v̂b from eq. (6) is consistent for the asymptotic
variance appearing in eq. (16) when the latter is tri-spectrum free.

Remark 4.1 Requiring that the asymptotic distribution be tri-spectrum free
is common with several resampling methods in the frequency domain. For ex-
ample, the original frequency domain bootstrap of Franke and Härdle (1992)
fails to capture the second term of (19) even for linear processes; see Papar-
oditis (2002) for a review. In general, by the Wold decomposition we have
Xt = EX0 +

∑
j≥0 ψjεt−j , where the sequence εt is mean zero, uncorrelated

with variance σ2, i.e., a white noise, but not necessarily i.i.d. If the process
{Xt} is linear (and causal), then {εt} is i.i.d. as well, and the expression for

the variance greatly simplifies. In this case, 〈〈g g F 〉〉 = (η − 3) 〈g f〉2, where
η = E[ε4t ]/σ

4. This yields a classical result: for linear time series, if the innova-
tion kurtosis is that of a Gaussian (i.e., η = 3), or in the special case when the
linear spectral mean is zero (i.e., 〈g f〉 = 0), then the asymptotic distribution
(16) is tri-spectrum free and Corollary 4.1 is applicable.

If {Xt} is linear but η 6= 3, it may still be possible to conduct inference on
spectral means via a hybrid procedure employing skip-sampling as a component.
For example, let η̂ be the estimator of η based on the technique of Fragkeskou
and Paparoditis (2016), and let f̂ be a consistent estimator of the spectral
density f . Then, we can estimate the asymptotic variance appearing in eq.

(16) by v̂b + (η̂ − 3) 〈g f̂〉
2
. Alternative hybrid methods are also available, see

Kreiss and Paparoditis (2003), or Meyer et al. (2020). A further result for skip-
sampling can be formulated if we extend the cumulant conditions to all orders.

Theorem 4.2 Assume that {Xt} is strictly stationary and satisfies Assumption
(Bk) for all k ≥ 2. Consider a linear spectral mean θ satisfying eq. (14), and
some fixed bounded function g(λ) having bounded variation. Let b be a sequence

satisfying (5). Then, for any j 6= k = 1, . . . , q, the skip-sample roots S
(j)
T (θ) and

S
(k)
T (θ) are jointly asymptotically normal with limiting covariance matrix equal

to 〈gg?f2〉 times the bivariate identity matrix.

Statement (a) of Assumption (A∗) follows from the weak convergence in
Theorem 4.2, and statement (b) follows from the asymptotic independence.
Hence, the conditions of Theorem 4.2 imply the validity of Theorem 3.1.
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Remark 4.2 (Total-draw skip-sampling) Analogues of Theorem 4.1 and
Corollary 4.1 can be established for total-draw skip-sampling; under the same

assumptions, and with θ̂
(]j)
b defined using symmetrization of the periodogram as

in (18), E[θ̂
(]j)
b ] = θ +O(b−1) +O(T−1) and Cov

(
θ̂
(]i)
b

u
, θ̂

(]j)
b

v)
for u, v = 1, 2

is O(r/b2) for r = 1, . . . , b and O(1/T ) for r = 0, where r is the number DFT

components in common between θ̂
(]i)
b and θ̂

(]j)
b . Furthermore, the total-draw

skip-sampling estimator v̂]b is consistent for the large-sample variance v when
the latter is tri-spectrum free.

4.3 Ratio statistics

Consider a parameter θ that is obtained as the finite ratio of two linear spectral
means, i.e., θ = 〈p f〉/〈mf〉 for some fixed bounded functions p(λ) and m(λ)
having bounded variation on [−π, π]. We can estimate θ by the ratio statistic

θ̂T =

∑
n∈RT

p(2πn/T ) IT (2πn/T )∑
n∈RT

m(2πn/T ) IT (2πn/T )
. (20)

The prime example of a ratio statistic is the sample autocorrelation at lag k,
where p(λ) = eikλ and m(λ) = 1.

Ratio statistics have an asymptotic distribution that can be tri-spectrum free
under some conditions, such as linearity of the time series, and are thus amenable
to frequency domain resampling. In fact, Dahlhaus and Janas (1996) showed
that the original frequency domain bootstrap of Franke and Härdle (1992) is not
only consistent, but higher-order accurate for ratio statistics from linear time
series. To elaborate, θ̂T −θ equals the ratio of two linear spectral mean statistics
(15) with respective weighting functions g = p − mθ (for the numerator) and
m (for the denominator), as shown in the proof of Corollary 9.6.9 of McElroy
and Politis (2020). Using Slutsky’s theorem for the denominator, Remark 4.1
implies that, provided the process is linear, ratio statistics satisfy a simplified
version of (16), viz.

T 1/2
(
θ̂T − θ

)
converges weakly to N

(
0, 〈g g? f2〉/〈mf〉2

)
as T →∞; (21)

the notation g? was defined right after eq. (16). In analogy with the previous
subsection, we define the jth regular-draw skip-sample ratio statistic via

θ̂
(j)
b =

b−1
∑[b/2]
`=1 p

?(2π`/b) IT (2π`/b+ 2πj̃/T )

b−1
∑[b/2]
`=1 m

?(2π`/b) IT (2π`/b+ 2πj̃/T )
.

Theorem 4.3 Assume that {Xt} is a strictly stationary linear process that sat-
isfies Assumption (Bk) for k = 2, . . . , 8. Consider a finite ratio of linear spectral
means θ = 〈p f〉/〈mf〉, for some fixed bounded functions p(λ) and m(λ) having

bounded variation, and let θ̂T be the ratio statistic (20). Let b be a sequence
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satisfying (5), and set g = p−mθ. Then, for any j = 1, . . . , q, we have

E[θ̂
(j)
b ] = θ +O(b−1) +O(T−1)

Var[θ̂
(j)
b ] = b−1 〈g g? f2〉/〈mf〉2 +O(T−2) +O(b−2) +O(b−1T−1).

Also, for i, j = 1, . . . , q and i 6= j, we have

Cov
(
θ̂
(i)
b , θ̂

(j)
b

)
= O(T−1); Cov

(
θ̂
(i)
b

2
, θ̂

(j)
b

)
= O(T−1); Cov

(
θ̂
(i)
b

2
, θ̂

(j)
b

2)
= O(T−1).

Theorem 4.3 confirms the validity of assumption set (8) in the context of ratio
statistics; the following corollary then ensues.

Corollary 4.2 Assume the assumptions of Theorem 4.3 and b = o(T 1/2). Then
the skip-sampling estimator v̂b from eq. (6) is consistent for the asymptotic
variance appearing in eq. (21).

Akin to Remark 4.2, total-draw skip-sampling can be applied for ratio statis-
tics, yielding analogues of Theorem 4.3 and Corollary 4.2; details are omitted.

5 Numerical Studies

In this section, simulations are carried out to compare skip-sampling to the
frequency domain bootstrap (FDB), focusing on the lag one autocovariance
and autocorrelation; these statistics are a spectral mean and a ratio of spectral
means, respectively. For conciseness, we only present results here on random-
draw skip-sampling. However, Appendix B contains numerical results based
upon regular-draw skip-sampling as well. The random-draw skip-sampling es-
timator is constructed as outlined in Sections 3.3, 4.2, and 4.3. Recall that for
large B the random-draw method behaves like the total-draw method, whose
use is justified by Corollary 3.2 and Remark 4.2; below, we use B = 1, 000
random skip-samples.

Following Kirch and Politis (2011), the FDB is constructed from the DFT:
the DFT is transformed by the reciprocal square root of a spectral density es-
timate (we use a Parzen window, as well as a trapezoidal window with cutoff
of .25, employing a positive definite modification); this transformed DFT is
de-meaned and an empirical distribution function is formed from its real and
imaginary parts. Bootstrap draws from the real and imaginary empirical dis-
tribution functions are then spliced into complex vectors with the Symmetry
Property (see Definition C.1 in Appendix C) enforced by employing Remark
C.1. Finally, these draws are back-transformed using the same square root
spectral density estimate, and the appropriate root is constructed.

The FDB employs a loop over the number of bootstrap draws, which can
be expensive for larger sample sizes; in contrast, the skip-sampling estimator
can be computed for a suite of choices of b in substantially less time. Also,
because the FDB involves division by the square root of the estimated spectral
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density, huge values of the ratio can occur when the latter is close to zero,
thereby greatly distorting the variability across simulations; this was egregious
for FDB with the trapezoidal window, but was less of a concern for FDB with
the Parzen window. Skip-sampling, in contrast, does not suffer from this issue
of occasional bad estimates, being more stable overall. We report the root mean
squared error (RMSE) based on 1, 000 Monte Carlo simulations.

For data generating processes (DGP) we consider: (i) a Gaussian MA(1),
(ii) an MA(1) with Student t innovations, (iii) an ARCH(1) with Gaussian
inputs, and (iv) a non-invertible Gaussian MA(1). We study the lag one auto-
covariance and the lag one autocorrelation, being examples of spectral means
and ratio statistics respectively. These statistics are asymptotically normal,
and we use FDB and skip-sampling to estimate the asymptotic variance v
(cf. Remark 3.1). For an MA(1) process with moving average parameter ϑ1

and innovation variance σ2, its spectral density is f(λ) = |1 + ϑ1e
−iλ|2 σ2 =(

(1 + ϑ21) + 2 cos(λ)ϑ1
)
σ2. Hence, with g(λ) = cos(λ) it follows that

〈g f〉 = ϑ1 σ
2 = γ1 and 〈g2 f2〉 =

σ4

2

(
3ϑ21 + (1 + ϑ21)

2
)
.

Using eq. (16) and Remark 4.1, the asymptotic variance of the lag one au-
tocovariance estimator is v =

(
1 + 5ϑ21 + ϑ41 + (η − 3)ϑ21

)
σ4. For a Gaussian

random variable η = 3, whereas for a Student t random variable with ν > 4
degrees of freeedom, η = 3 + 6/(ν − 4). Similarly, from eq. (21) we find that
the asymptotic variance of the lag one autocorrelation estimator is

v =
(1 + 4θ2 + θ4)(1 + 2θ2/(1 + θ2)

2
)− 7θ2

(1 + θ2)
2 .

Hence, for the first two DGPs (and the fourth DGP) we can compute the
true asymptotic variance v, and make RMSE comparisons with FDB and skip-
sampling estimates of this variance. The third DGP is non-linear, so we make a
direct calculation of 〈〈ggF 〉〉. To our knowledge, calculation of the GARCH tri-
spectrum is still an open problem, although the spectral density of the squared
process is known (see He and Teräsvirta (1999)) and this will be sufficient for
our purposes. Letting g(λ) = eiλ,

〈〈ggF 〉〉 =

∞∑
k=−∞

γk+1,k,1 =

∞∑
k=−∞

Cov[XtXt−1, Xt−kXt−k−1]− γ2k − γk+1γk−1.

It can be shown that the covariance is zero unless k = 0; letting τh be the lag
h autocovariance of {X2

t }, we seek to compute τ1. For an ARCH(1) process

of parameter β and input errors {Zt}, i.e., Xt = Zt(1 + βX2
t−1)

1/2
, He and

Teräsvirta (1999) show that τ1 = βτ0 and τ0 = (η − 1)(1− β)
−2

(1− ηβ2)
−1

,
where η = E[Z4

t ]. There is an implicit stationarity condition that ηβ2 < 1; for
standard normal inputs we have η = 3, and choosing β = .5 the stationarity
condition is satisfied. Since γh = 1{h = 0}(1− β)

−1
, the asymptotic variance

of the lag one autocovariance estimator is v = 〈gg?f2〉 + 〈〈ggF 〉〉 = γ0 + (τ1 −
γ0) = 2β(1− β)

−2
(1− 3β2)

−1
. Because the lag one autocorrelation is zero, the

variance of its estimator turns out to be v = 1.
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We consider two sample sizes: T = 240 and T = 1200. For the smaller sam-
ple, the bandwidth fractions used in the FDB are h = .1 and h = .3, whereas
the values of q are chosen from {40, 30, 24, 20, 16, 12, 10, 8, 6, 5, 4, 3} (which yields
b ∈ {6, 8, 10, 12, 15, 20, 24, 30, 40, 48, 60, 80}). For the larger sample, the band-
width fractions are h = .05 and h = .1 and the same values of b (so the q values
are 5 times as large). For DGP (i) we set ϑ = .8, and for DGP (ii) we set
ϑ = −.4 and ν = 6. For DGP (iii) we set β = 1/3, and for DGP (iv) we set
ϑ = −1, which means the spectral density at frequency zero equals zero. Tables
1 and 2 report the RMSE results for both sample sizes and both statistics.

First DGP Second DGP Third DGP Fourth DGP
T = 240 acvf acf acvf acf acvf acf acvf acf

FDB Trapezoid (h = .1) 8.29 0.19 1.00 0.15 1.09 0.22 138.44 0.88
FDB Trapezoid (h = .3) 210.58 0.76 126.41 0.42 143.98 0.71 3932.47 0.35
FDB Parzen (h = .1) 1.62 0.10 0.99 0.14 1.14 0.21 2.55 0.10
FDB Parzen (h = .3) 1.81 0.13 1.13 0.17 1.04 0.26 2.78 0.12

Skip (b = 6) 2.64 0.07 1.23 0.31 1.18 0.44 5.26 0.23
Skip (b = 8) 2.34 0.12 1.13 0.25 1.11 0.34 4.70 0.20
Skip (b = 10) 2.21 0.13 1.09 0.22 1.13 0.30 4.31 0.18
Skip (b = 12) 2.15 0.13 1.09 0.20 1.09 0.27 4.09 0.17
Skip (b = 15) 2.27 0.11 1.08 0.15 1.06 0.25 3.36 0.10
Skip (b = 20) 2.06 0.13 1.06 0.18 1.04 0.25 3.69 0.14
Skip (b = 24) 2.07 0.13 1.05 0.18 1.07 0.25 3.60 0.14
Skip (b = 30) 2.05 0.14 1.05 0.19 1.03 0.26 3.33 0.14
Skip (b = 40) 2.07 0.14 1.09 0.20 1.02 0.29 3.27 0.15
Skip (b = 48) 2.11 0.15 1.11 0.21 1.02 0.31 3.21 0.16
Skip (b = 60) 2.14 0.17 1.14 0.23 1.02 0.34 3.19 0.17
Skip (b = 80) 2.27 0.20 1.23 0.27 1.07 0.40 3.33 0.20

Table 1: RMSE for Frequency Domain Bootstrap (FDB) and Random-draw
skip-sampling, for estimating the variance v of both the lag one autocovariance
(acvf) and autocorrelation (acf), for four DGPs (Gaussian MA(1), Student t
MA(1), Gaussian ARCH(1), and non-invertible MA(1)) of sample size T = 240.
Bandwidth fraction for FDB is h and the size of skip-samples is b.

For T = 240 we see in Table 1 that skip-sampling is competitive with FDB
in many situations, although we may wish to discount the h = .3 results for
the FDB with Trapezoidal window, as a few poor estimates blow up the RMSE.
(This is blow up is especially prevalent for DGP (iv), where the non-invertibility
of the spectral density causes a challenge for the Trapezoidal FDB, since one
must divide by an estimate of the spectral density.) In practice one does not
know what bandwidth will work the best; skip-sampling yields a performance
that is fairly uniform across b. For autocovariance estimation, performance is
similar for the Parzen FDB and skip-sampling in the cases of DGPs (ii) and
(iii), and slightly worse for skip-sampling in DGPs (i) and (iv). While the
Parzen FDB is superior in the autocorrelation estimation for DGPs (ii) and
(iii), skip-sampling is on par for DGPs (i) and (iv). The results of Table 1
for T = 1200 indicate an improved performance of skip-sampling relative to
Parzen FDB; for instance, the acvf case of DGP (ii) has better performance for
skip-sampling. Results for regular-draw skip-sampling are found in Tables B.1
and B.2 of Appendix B; it is apparent that the estimates from random-draw
skip-sampling (which is a proxy for total-draw) are more accurate as compared
to regular-draw. The situation can be compared to time domain subsampling
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First DGP Second DGP Third DGP Fourth DGP
T = 1200 acvf acf acvf acf acvf acf acvf acf

FDB Trapezoid (h = .05) 0.83 0.06 0.70 0.08 0.41 0.12 37.22 0.75
FDB Trapezoid (h = .1) 0.94 0.07 0.79 0.10 0.46 0.14 3.85 0.20
FDB Parzen (h = .05) 0.82 0.05 0.68 0.07 0.39 0.11 1.26 0.05
FDB Parzen (h = .1) 0.88 0.06 0.75 0.08 0.44 0.13 1.36 0.06

Skip (b = 6) 2.51 0.05 0.64 0.30 0.44 0.42 3.62 0.23
Skip (b = 8) 1.95 0.10 0.57 0.23 0.43 0.31 3.07 0.19
Skip (b = 10) 1.66 0.11 0.54 0.19 0.43 0.25 2.61 0.17
Skip (b = 12) 1.46 0.11 0.54 0.17 0.42 0.21 2.41 0.15
Skip (b = 15) 1.64 0.06 0.67 0.09 0.51 0.17 1.54 0.05
Skip (b = 20) 1.17 0.08 0.55 0.12 0.43 0.15 1.94 0.11
Skip (b = 24) 1.12 0.08 0.58 0.11 0.42 0.14 1.88 0.10
Skip (b = 30) 1.07 0.07 0.60 0.11 0.42 0.14 1.75 0.09
Skip (b = 40) 1.04 0.07 0.61 0.10 0.42 0.13 1.65 0.08
Skip (b = 48) 1.02 0.06 0.62 0.10 0.43 0.13 1.62 0.08
Skip (b = 60) 1.04 0.06 0.64 0.10 0.42 0.13 1.54 0.08
Skip (b = 80) 1.03 0.06 0.68 0.10 0.44 0.14 1.53 0.08

Table 2: RMSE for Frequency Domain Bootstrap (FDB) and Random-draw
skip-sampling, for estimating the variance v of both the lag one autocovariance
(acvf) and autocorrelation (acf), for four DGPs (Gaussian MA(1), Student t
MA(1), Gaussian ARCH(1), and non-invertible MA(1)) of sample size T = 1200.
Bandwidth fraction for FDB is h and the size of skip-samples is b.

where subsampling non-overlapping blocks is consistent but less efficient com-
pared to using all available blocks; see eq. (3.46) of Politis et al. (1999).

Remark 5.1 (Numerical stability) As already mentioned, the numerical in-
stability of the FDB can be attributed to the required normalization of peri-
odogram ordinated by division by a local estimate of the spectral density (which
may turn out to be close to zero). Skip-sampling does not require this normal-
ization and is thus simpler to implement, as well as being numerically stable.

Remark 5.2 (Computational cost) An advantage of skip-sampling over the
FDB is its lower computational cost. With sample size T = 1200, the FDB (with
Trapezoidal window and h = .05) takes 16.73 seconds for a typical run using
DGP (i) on a 2.40 GHz processor. In contrast, regular-draw skip-sampling
requires .23 seconds (with q = 200), and .39 seconds with the random-draw
skip-sampling method. For the smaller sample size of T = 240 (and q = 40),
the FDB (with Trapezoidal window and h = .1) takes .77 seconds while random-
draw skip-sampling takes .11 seconds and regular-draw less than .01 seconds.
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365–381. Birkhäuser, Boston.

[21] Paparoditis, E. and Politis, D.N. (1999). The local bootstrap for peri-
odogram statistics, Journal of Time Series Analysis 20, 193–222.

[22] Politis, D.N., and Romano, J.P. (1994), Large sample confidence regions
based on subsamples under minimal assumptions, Ann. Statist., 22: 2031-
2050.

[23] Politis, D.N., Romano, J.P. and Wolf, M. (1999). Subsampling, Springer,
New York.

[24] Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical
Inference for Time Series, Springer, New York.

[25] Yu, H., Kaiser, M.S. and Nordman, D.J. (2023). A subsampling perspective
for extending the validity of state-of-the-art bootstraps in the frequency
domain, Biometrika (to appear).

18


