
Supplement: numerical illustration

We now revisit the setup of nonparametric function estimators discussed in Section 4.2 in order
to provide some numerical illustrations. We will focus on two specific cases of wide interest, namely
estimation of a probability density function (PDF) or a spectral density function (SDF). In particular,
the parameter θ will represent the value of the respective function at some point which, for the sake
of concreteness, will be taken to be the origin. In either case, θ̂n will denote a kernel-smoothed
estimator of θ; see Rosenblatt (1991) or Politis (2003) for details. For concreteness, we will use a
Gaussian kernel for PDF estimation, and Parzen kernel for SDF estimation although other choices
are possible; see McElroy and Politis (2020) for a description of the Parzen kernel.

Calculations were performed in R on a 4-core Intel i7 PC. Run times were computed using the
function system.time; what is reported is user time (in seconds). PDF estimation was performed
using the R function density, while SDF estimation was performed using a custom function; in
both cases, the bandwidth was chosen proportional to n−1/5. The data generating process (DGP)
in the PDF case was Xi ∼i.i.d. N(1, 1), whereas in the SDF case the Xi followed the AR(1) model
Xi = 0.5Xi−1 + Zi with Zi ∼i.i.d. N(0, 1); other DGPs gave qualitatively similar results.

Let θ̄
(1)
SS denote the SSA estimator θ̄b,n,SS with b = Θ(n4/5), h = b, and undersmoothed band-

width proportional to b−1/4; denote by θ̄
(2)
SS is the SSA estimator with the same bandwidth and

block size except now we take h = [b/2]. Note that the custom function used to compute the SSA
estimator first extracts the blocks Bj , and then applys the relevant statistic to each block using the
R function apply; this avoids a time-consuming for loop, and better mimicks what would happen
with distributed processing. Tables 1 and 2 contain the results; here, empirical Mean Squared Errors
(MSE) and Run Times (in seconds) were computed as averages of 250 replications.

First note that in both Tables 1 and 2, run times get doubled in SSA estimation when going
from h = b to h = [b/2]; this is expected since q gets doubled. What is interesting is that the gains
in MSE are minuscule (or not at all). Hence, the extra computing expense is not warranted, and

taking h = b is recommended. In what follows we focus on comparing the estimator θ̂n to just θ̄
(1)
SS .

It is apparent from the run times of Table 1 that PDF estimation is very fast and efficient;
this is not surprising since the function density is based on the Fast Fourier Transform (FFT).

Interestingly, it appears that θ̂n is computable faster than θ̄
(1)
SS which may seem unexpected but can

be explained in the sense that an FFT of a big segment may be computable faster than the aggregate
of the FFTs of the blocks Bj . Nevertheless, for n = 109 (or larger), the PDF estimator θ̂n is simply
not computable in the 32-bit version of R as the necessary memory to store the data vector can not

be allocated. In this case, θ̄
(1)
SS is the only viable alternative using b ∼ n4/5 = 107.2.

What is surprising is that θ̄
(1)
SS appears to be more accurate than θ̂n in PDF estimation as

measured by MSE; see Table 1. However, this may be just due to a bandwidth effect. To discuss it,

recall that the procedure to compute θ̄
(1)
SS involves an average of undersmoothed estimators; averaging

provides extra smoothing, bringing θ̄
(1)
SS to have the optimal degree of smoothing (and optimal rate

of convergence) as if a bandwidth of the optimal order n−1/5 were used. In the PDF case, it is

possible that the implicit bandwith in θ̄
(1)
SS is a better choice than the one used for θ̂n.

The situation is quite different in the case of SDF estimation; see Table 2. Here, θ̂n is more
accurate for n = 1000 but this phenomenon diminishes when n = 105 and is reversed when n = 106.

In fact, at the highest sample size, θ̄
(1)
SS is both more accurate and faster to compute compared to θ̂n.

It is expected that the gains in run time would become more significant for sample sizes bigger than 
n = 106. However, SDF estimation is much more computationally expensive as compared to PDF 
estimation; for this reason, the large-sample case of n = 107 was left out, as was the computation



Table 1: Empirical Mean Squared Errors (MSE) and Run Times (RT) in the seting of probability
density estimation (PDF) for different sample sizes.

n4/5∗MSE(θ̂n) n4/5∗MSE(θ̄
(1)
SS) n4/5∗MSE(θ̄

(2)
SS) RT(θ̂n) RT(θ̄

(1)
SS) RT(θ̄

(2)
SS)

n = 103 0.032 0.029 0.029 0.001 0.004 0.008
n = 105 0.111 0.078 0.078 0.008 0.036 0.069
n = 106 0.435 0.255 0.253 0.068 0.189 0.378
n = 107 2.769 1.640 1.613 0.380 0.884 1.883

Table 2: Empirical Mean Squared Errors (MSE) and Run Times (RT) in the seting of spectral
density (SDF) estimation for different sample sizes.

n4/5∗MSE(θ̂n) n4/5∗MSE(θ̄
(1)
SS) n4/5∗MSE(θ̄

(2)
SS) RT(θ̂n) RT(θ̄

(1)
SS) RT(θ̄

(2)
SS)

n = 103 2.620 4.976 4.818 0.002 0.005 0.010
n = 105 3.179 3.341 3.391 1.101 0.955 1.874
n = 106 2.924 2.863 NA 8.585 7.396 NA

of θ̄
(2)
SS when n = 106. Computation of a single realization of θ̂n is doable for n = 107 but it may

take several minutes. As with the PDF case, computing the SDF estimator θ̂n with n of the order

of n = 109 is not possible in R; nevertheless, θ̄
(1)
SS remains a viable and highly accurate alternative.
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