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The problem of nonparametric estimation of a univariate density with rth continuous deriva-
tive on compact support is addressed (r ≥ 2). If the density function has compact support
and is non-zero at either boundary, regular kernel estimator will be completely biased at
such boundary. Although several correction methods were proposed to improve the bias at
the boundary to h2 in the last decades, this paper initiates a way to further improve bias
to higher order (hr) for interior area of density function support, while remaining the order
of bias h2 at boundary. We will first review flat-top kernel estimator and flat-top series es-
timator, then propose the Transformed Flat-top Series estimator. The theoretical analysis is
supplemented with simulation results as well as real data applications.
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1. Introduction

Suppose the observed sample X1, . . . , Xn is independent, identically distributed (i.i.d.)
having univariate smooth density distribution fX(x) with compact support; without
loss of generality, let fX(x) has support [0, 1] and rth continuous derivative (r ≥ 2).
The independence assumption is just for ease of presentation. All results in the paper
at hand hold true if the sample X1, . . . , Xn is only assumed to be strictly stationary
obeying some weak dependence assumptions; see Paparoditis and Politis (2016a) and
the references therein.
The standard kernel density estimator is

f̂X(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(1)

where K(·) is a kernel function that usually is symmetric and satisfies
∫
K(x)dx = 1;

here h > 0 denotes the bandwidth which is assumed to tend to zero as n → ∞. It is well
known that such density kernel estimators suffer from boundary effects.
Numerous methods have been developed in the literature to reduce the boundary

bias problem. Schuster (1985a), Silverman (1986), Cline and Hart (1991) considered the

∗Corresponding author. Email: wangliang6111@gmail.com



April 30, 2022 Journal of Nonparametric Statistics output

reflection method, which will reduce the boundary bias to O(h2) when the derivative
of density at boundary is zero, otherwise the boundary effect is still slight improved
with bias O(h). The boundary kernel method that uses a nonsymmetric kernel function
at boundary points was developed by Gasser and Muller (1979), Gasser, Muller, and
Mammitzsch (1985), Jones (1993), Muller (1991), Zhang and Karunamuni (2000). The
local linear method is more general and fast implemented without many assumptions
on; it was developed by Cheng, Fan, and Marron (1997), Cheng (1997), Zhang and
Karunamuni (1998). The pseudo-data method, proposed by Cowling and Hall (1996),
generates pseudo-data by linear interpolation of order statistics, and estimates the density
function by using original data together with pseudo-data.
The transformation method, which is employed in the paper at hand, was first proposed

by Wand, Marron, and Ruppert (1991), and then further developed by Wen and Wu
(2015). Hall and Park (2002) presented the “empirical translation correction” method.
The beta kernel estimator that uses the beta density as kernel function was proposed by
Chen (1999). Jones and Henderson (2007) discussed a Gaussian copula estimator. Zhang,
Karunamuni, and Jones (1999) combined the pseudo-data, transformation and reflection
methods. Marron and Ruppert (1994) combined transformation and reflection methods.
In this paper, we propose to combine the above mentioned transformation method

and the flat-top kernel series method of Politis (2001), which eventually improves the
bias at interior area of density function support to hr, while remaining bias at boundary
h2. To give some background on the flat-top kernels: Politis and Romano (1999, 1993)
proposed flat-top kernel probability density estimators in the univariate and multivariate
case respectively. Later, Politis (2001) proposed flat-top series estimator of a density with
compact support while Politis (2003) introduced an adaptive bandwidth choice method
for spectral density and probability density functions estimated with flat-top kernels.
More details of flat-top kernel estimator and flat-top series estimator are provided in
Section 2.
The remainder of the paper is organized as follows. Section 2 gives some background on

the transformation method, the flat-top kernel and flat-top series estimators, along with
some preliminary results. Section 3 presents the Transformed Rectangular Flat-top Series
estimator. Section 4 presents the Transformed Infinitely Differentiable Flat-top Series
estimator, and shows the higher order bias in the interior region. The implementation and
selection of parameters are discussed in Sections 5 and 6. Section 7 conducts simulation
study and Section 8 gives the application to three financial returns time series. Concluding
comments are given in section 9; all technical proofs are in the Appendix.

2. Background on the Transformation Method and Flat-top Estimators

2.1. Review of the Transformation Method

Before starting to introduce the spirit of the transformation method, we first briefly re-
view why regular kernel density estimator misbehaves with a density function on compact
support. Equation (1) and a Taylor expansion of f̂X(x) with respect to x near the left
boundary gives

E
[
f̂X(x)

]
= µ0(C)fX(x)− hµ1(C)f

(1)
X (x) +

h2

2
µx(C)f

(2)
X (x) + o(h2);
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for the proof, see Appendix A of Marron and Ruppert (1994). In the above, x = Ch

for some C ∈ [0, 1], µk(C) =
∫ C
−1 u

kK(u)du, and f
(j)
X is the jth derivative of fX . Since

µ0(0) =
1
2 , µ0(1) = 1 and µ0(C) < 1 for C ∈ [0, 1), the kernel estimator at zero has bias

that does not vanish asymptotically.
To correct this problem, Schuster (1985b) proposed the reflection method which is

implemented as:

f̃X(x) =


f̂X(x) + f̂X(−x), if x ∈ [0, h)

f̂X(x), if x ∈ [h, 1− h]

f̂X(x) + f̂X(2− x), if x ∈ (1− h, 1]

0, if x /∈ [0, 1].

Then under the same assumptions,

E
[
f̃X(x)

]
= fX(x) +

h2

2
µ2(1)f

(2)
X (x)− 2h{Cµ0(−C) + µ1(−C)}f (1)

X (x)

+ 2h2{C2µ0(−C) + Cµ1(−C)}f (2)
X (x) + o(h2)

where x = Ch for C ∈ [0, 1]. If f
(1)
X (0) ̸= 0, the bias above has order of h which tends to

zero as n → ∞. Furthermore, if f
(1)
X (0) = 0, the bias will have order of h2.

Marron and Ruppert (1994) proposed to construct a new random variable Y = g(X)
with probability density fY whose first derivative satisfying f ′

Y (0) = 0. Then, they es-
timated fY near the left boundary via a kernel with the reflection method obtaining a
boundary bias of order O(h2) which can then deliver this property back to estimating
fX . To elaborate, denote the transform function by g(·), a fixed one-to-one and mono-
tonically increasing function; suppose random variable X follows the density fX(x) with
support [0, 1], let Y = g(X), and denote fY (y) the density function of Y . Then,

fX(x) = fY [g(x)]g
′(x)

Denote f̂Y an estimator of fY based on data {Yi = g(Xi)}ni=1; then the transformed
estimator employed by Marron and Ruppert (1994) was:

f̂X(x; g) = f̂Y [g(x)]g
′(x), (2)

Assume g(x) is smooth, and that supx∈[0,1] |g′(x)| ≤ M for some positive value M ; then,∣∣∣E[f̂X(x; g)]− fX(x)
∣∣∣ = ∣∣∣E [

f̂Y [g(x)]g
′(x)

]
− fY [g(x)]g

′(x)
∣∣∣

≤ M ·
∣∣∣E(

f̂Y [g(x)]
)
− fY [g(x)]

∣∣∣ (3)

Similarly, we also have

Var
[
f̂X(x; g)

]
≤ M2 ·Var

[
f̂Y [g(x)]

]
(4)

The methodology to be proposed in our paper also uses the transformation idea Y = g(X)
with g(·) satisfying some specific conditions but uses the flat-top series estimator of Politis
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(2001) instead of the reflection method; more details will be given in Section 3.

2.2. Review of Flat-top Kernel Density Estimator

This subsection reverts to considering the problem where the random variable X has
density fX(x) on the whole of R. For this problem, higher order kernel density estimator
and infinite order kernel estimator were designed to improve the order of bias. Recall
that a kernel function K(·) is of order q if K(·) has finite moments up to qth order, and
moments of order up to q − 1 equal to zero, i.e.,

∫
xqK(x)dx ̸= 0 but

∫
xkK(x)dx = 0

for ∀k ≤ q − 1. Now suppose a density function fX(x) has r continuous and bounded
derivatives, then it is well-known that

Bias
[
f̂X(x)

]
= Ef̂X(x)− fX(x) = cf,K(x)hk + o(hk)

where k = min(q, r) and cf,K(x) is a bounded function depending on K(·), fX and its
derivatives. Standard kernel functions are nonnegative and symmetric around zero, and
consequently the bias is of order O(h2) provided r ≥ 2. In order to get a better bias
order of O(hk) with k ≥ 2, one must use a kernel of higher order q > 2; this idea dates
back to Bartlett (1963) and Parzen (1962). More references on high-order kernels include
Silverman (1986); Gasser et al. (1985); Cacoullos (1966); Devroye (1987); Granovsky and
Muller (1991); Jones (1995); Jones and Foster (1993); Marron (1994); Marron and Wand
(1992); Nadaraya (1989).
The question arises: what order kernel to use to get full advantage of possible smooth-

ness of fX and obtain maximum bias reduction? One needs to choose order q ≥ r but
the degree of smoothness r is unknown. To achieve q ≥ r for any potential value of r,
it is natural to choose q = ∞. Indeed, the aforementioned flat-top kernels have infinite
order and achieve a bias of order O(hr) no matter how large is r. Furthermore, Politis
(2003) proposed a simple bandwidth selection methods for flat-top kernel estimators that
is easier than the bandwidth selection procedures associated with finite-order kernels. In
the following definition, we denote the flat-top kernel function as Ω(·) instead of K(·).

Definition 2.1 Let c be a positive value; the kernel Ωc is said to be a member of the
general family of univariate flat-top kernels of infinite order if

Ωc(x) =
1

2π

∫
ωc(s)e

−isxds

where the Fourier transform ωc(s) satisfies the following properties:

(i) ωc(s) = 1 for some c > 0, for all |s| ≤ c;
(ii)

∫
|ωc(s)|2ds < ∞;

(iii) ωc(s) = ωc(−s) for any s ∈ R.

The above three properties will guarantee the infinite order, a finite variance of the
resulting estimator, and that Ωc(x) is real valued. In this paper, c is a positive value ≤ 1,
and we will assume ωc(s) has compact support, i.e.

ωc(s) =


1, |s| ≤ c

ηω(s), c < |s| ≤ 1

0, |s| > 1

(5)

4
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where the function ηω(s) determines the shape of ωc(s) outside the flat regions. Like
regular kernel estimator, with a bandwidth h, we define

Λc(x) =
1

h
Ωc

(x
h

)
and λc(s) =

∫
Λc(x)e

isxdx = ωc(hs)

Denote ϕX(s) =
∫
eisxfX(x)dx the characteristic function, and let ϕ̂X(s) =

(1/n)
∑n

k=1 e
isXk be the sample characteristic function; then the flat-top kernel estimator

of fX(x) is

f̂X(x) =
1

n

n∑
i=1

Λc(x−Xi) =
1

2π

∫
λc(s)ϕ̂X(s)e−isxds (6)

Theorem 2.2 (Politis and Romano (1999)) Assume there is an r > 0, such that∫
|s|r|ϕX(s)|ds < ∞ (7)

Assume that n → ∞, and let h ∼ An−1/(2r+1), for some constant A > 0; it follows that

sup
x∈R

Bias
[
f̂X(x)

]
= o(hr)

and

sup
x∈R

MSE
[
f̂X(x)

]
= O

(
n− 2r

2r+1

)
where MSE is short for Mean Squared Error.

Note that condition (7) implies that fX(x) has r bounded and continuous derivatives.

Remark 2.3 For the scenario fX is infinitely differentiable function, although it is less
practical, one can show Theorem 2.2 still holds, for any non-negative integer r. Thus if
fX is infinitely differentiable function, with appropriate selection of bandwidth h, Flat-top
Kernel Estimator will achieve very fast convergence rate. Selection of bandwidth h will
be discussed in Section 6.2.

2.3. Flat-top Series Estimator of Density on Compact Support

We now return to the problem where fX(x) is a very smooth density function on [0, 1].
Denote f̃X(x) the periodic extension of fX(x) on the whole real line; apparently f̃X(x)

has period 1. Denote the characteristic function ϕX(s) =
∫ 1
0 eisxfX(x)dx, and the sample

characteristic function ϕ̂X(s) = (1/n)
∑n

k=1 e
isXk . Now expand f̃X(x) in a Fourier series:

f̃X(x) =
∑
s∈Z

e−i2πsxϕX(s).

5
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Analogously to (6)—but replacing Fourier transform by Fourier series—is the definition
of flat-top series estimator of Politis (2001), i.e., let

f̂X(x) =

{∑
s∈Z λc(s)e

−i2πsxϕ̂X(s), 0 ≤ x ≤ 1

0, x < 0 or x > 1
(8)

Apparently
∑

s∈Z λc(s)e
−i2πsxϕ̂X(s) is also a periodic function with period 1 on the

whole real line but we only need the part on the interval [0, 1]. First, recall the following
theorem:

Theorem 2.4 (Politis (2001)) If there exists r > 0, such that∑
s∈Z

|s|rϕX(s) < ∞ (9)

letting h ∼ An−1/(2r+1) for some constant A > 0, it follows that

sup
x∈[0,1]

Bias
[
f̂X(x)

]
= o(hr)

and

sup
x∈[0,1]

MSE
[
f̂X(x)

]
= O

(
n− 2r

2r+1

)
(10)

Notice that condition (9) implies f̃X has r bounded and continuous derivatives; in
particular, it implies that fX has r bounded and continuous derivatives that satisfy
“wrap-around” continuity, i.e.,

fX(0) = fX(1), f
(1)
X (0) = f

(1)
X (1), f

(2)
X (0) = f

(2)
X (1), . . . , f

(r)
X (0) = f

(r)
X (1).

Remark 2.5 Similar to Remark 2.3, for the scenario f̃X is infinitely differentiable
function, one can show Theorem 2.4 still holds, for any non-negative integer r.

In next theorem, we relax (9) it in the following new theorem:

Theorem 2.6 Let fX(x) be a differentiable density function defined on [0, 1], and denote

f
(1)
X its first derivative. Assume 0 < |fX(1) − fX(0)| < ∞, and f

(1)
X ∈ L1[0, 1], i.e.∫ 1

0 |f (1)
X (x)|dx < ∞. Then

sup
x∈[0,1]

Var
[
f̂X(x)

]
= O

[
1

nh
log

(
1

h

)]
(11)

From the proof of Theorem 2.6 given in the appendix we can also obtain the following
Corollary.

Corollary 2.7 Let fX(x) be a twice differentiable density function defined on [0, 1].

Assume |fX(1)− fX(0)| = 0, 0 < |f (1)
X (1)− f

(1)
X (0)| < ∞ and both of f

(1)
X , f

(2)
X ∈ L1[0, 1].

6
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Then

sup
x∈[0,1]

Var
[
f̂X(x)

]
= O

(
1

nh

)
(12)

Lastly, we present the following new theorem under a weaker condition compared to
(9) in Theorem 2.4.

Theorem 2.8 Let fX(x) denote the density function on [0, 1] and f̃X(x) be the periodic
extension of fX(x). If f̃X(x) has (r − 1)th bounded and continuous derivative (for some

r ≥ 1), and f̃
(r)
X (x) is continuous except for jump discontinuities when x ∈ Z. More

specifically, f
(r)
X (x) is continuous on [0, 1], but 0 < |f (r)

X (0) − f
(r)
X (1)| < ∞. Moreover,

assume f
(r+1)
X (x) is continuous on [0, 1]. Then for h ∼ An−1/(2r+1), we still have result

(10) and the bias satisfies

sup
x∈[0,1]

Bias
[
f̂X(x)

]
= O(hr).

The theorem’s proof is provided in the appendix for a special case of ωc(s) , i.e., ωc(s)
with c = 1 and ηω = 0, and we also call it a rectangular flat-top function; the general
case is similar albeit more involved technically.

3. Transformed Rectangular Flat-top Series Estimator

Although Theorem 2.4 and Theorem 2.8 guarantee good properties of flat-top series
estimator, they also require very strict conditions. In practical use, the periodic extension
f̃X of density fX rarely has up to rth bounded and continuous derivative. The smoothness
of fX(x) on (0, 1) is not issue; the issue is with the boundary values. For example, there
is no reason to assume that fX(0) = fX(1), and the same is true for the derivatives of fX .
In other words, it is not realistic to assume the periodic extension f̃X is smooth or even
continuous in which case the flat-top series estimator fails. However, the trasformation
method can be used to bring us to a realm where the boundary continuity conditions are
satisfied, and hence the flat-top series estimator can be successfully used.
Consequently, our transform function g(·) has the particular target to render

fY (0) = fY (1)

where Y = g(X), and fY (·) is true density function of Y . Nevertheless, the proof of

Theorem 2.8 in appendix shows that if f
(1)
Y (0) ̸= f

(1)
Y (1), then the bias of flat-top series

estimator has order at most O(h) universally. Thus, we need to modify our “target” to
be:

fY (0) = fY (1); f
(1)
Y (0) = f

(1)
Y (1) (13)

in order to achieve order of bias O(h2).

Remark 3.1 “Target” (13) is only designed for rectangular flat-top series estimator. In
the next section of infinitely differentiable flat-top estimator, we will just need the basic
target fY (0) = fY (1).

7
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In what follows, we will pick g(·) from some parametric family of functions. Let Θ ⊂ Rk

and G = {gθ(·) for θ ∈ Θ} be a parametric family of transformations where each gθ(x)
is defined for x ∈ [0, 1]. We will need the following condition throughout:

Condition 3.2 Each gθ(x) ∈ G is three times continuously differentiable with respect
to x and has a strictly positive derivative from [0, 1] to [0, 1]. Derivatives at 0 and 1 are
one sided. In addition there exists a constant K > 0, s.t.

max
j=0,1,2,3

{ sup
x∈[0,1]

|g(j)θ (x)− g
(j)
θ0

(x)|} ≤ K||θ − θ0|| (14)

where g
(j)
θ (x) is the jth derivative of gθ are with respect to x, and || · || denotes the

Euclidean norm on Rk.

One example where condition (3.2) is satisfied is when gθ is polynomial with θ being
the vector of coefficients.
Eq. (2) still applies but since g is no longer fixed, we need better notation. Here and

for the remainder of the paper, let fY (·; g) denote the density function of Y = g(X), let

f̂Y (·; g) denote its flat-top series estimator, let ϕY (·; g) denote its characteristic function,
and let ϕ̂Y (·; g) denote the estimated characteristic function. We then formally define the
Transformed Flat-top Series estimator as

f̂X(x; g) = f̂Y [g(x); g]g
′(x) (15)

for some g ∈ G. Now assume Yθ0 = gθ0(X) satisfies (13); we shall be concerned with the
case where θn is an estimator of θ0 based on the sample {Xi}ni=1. Let Yθn = gθn(X), the
actual transformed flat-top series estimator—using a data-based estimator for g—then
is

f̂X(x; gθn) = f̂Yθn
[gθn(x); gθn ]g

′
θn(x)

= f̂Y [g(x); g]
∣∣
g=gθn

g′θn(x) (16)

where

f̂Yθn
[gθn(x); gθn ] =

∑
s∈Z

λc(s)e
−i2πsgθn (x)ϕ̂Yθn

(s; gθn). (17)

Using the same trick as in Marron and Ruppert (1994), we define the expectation of
flat-top series estimator of fYθn

given gθn as:

Ef̂Yθn
(y; gθn) =

[
Ef̂Y (y; g)

] ∣∣∣
g=gθn

= E

[∑
s∈Z

λc(s)ϕ̂Y (s; g)e
−i2πsy

] ∣∣∣∣∣
g=gθn

=
∑
s∈Z

λc(s)ϕYθn
(s; gθn)e

−i2πsy (18)

which is a sort of modified partial sum of Fourier series of the periodic extension
f̃Yθn

(y; gθn) of fYθn
(y; gθn). Note ϕYθn

(·; gθn) is the characteristic function of Yθn .

8
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Remark 3.3 The above definition side-steps the randomness inherent in gθn in order
to develop tractable expressions for bias and variance. The reason that we can safely
ignore the randomness inherent in gθn is that gθn is estimated at a fast rate. In fact, in
Section 5 we will use simple boundary correction method by Jones (1993) to estimate

gθn of which mean squared error with order Op(
√

(nh)−1 + h2, smaller (and therefore
negligible) compared to △n = 1

log(1/h) , which is the rate of convergence given in the

following novel result.

Theorem 3.4 For the problem fX is r times continuously differentiable (r ≥ 2) on
[0, 1] (and therefore also bounded) but fX(0) ̸= fX(1), suppose θ0 ∈ Θ, and Condition
3.2 holds. Define G△n

= {gθn : ||θn − θ0|| ≤ △n and θn ∈ Θ}. Let h = h(n) → 0 as
n → ∞ for some function h(·), with large enough n so that h < 1, and let △n = 1

log(1/h) .

Then for any gθn ∈ G△n

sup
y∈[0,1]

∣∣∣f̂Yθn
(y; gθn)− Ef̂Yθn

(y; gθn)
∣∣∣ = Op

(
1√
nh

)
(19)

Note that if ||θn − θ0|| = op(△n), then P (gθn ∈ G△n
) → 1, and the above result allows

for gθn being random. As mentioned in Remark 3.3, ||θn − θ0|| = Op

(√
(nh)−1 + h2

)
which is indeed op(△n) since typically we let h = n−β for some β ∈ (0, 1).

Corollary 3.5 If ||θn − θ0|| = Op

(√
(nh)−1 + h2

)
, then P (gθn ∈ G△n

) → 1, and

1 ≥ P

[
sup

y∈[0,1]

∣∣∣f̂Yθn
(y; gθn)− Ef̂Yθn

(y; gθn)
∣∣∣ = O

(
1√
nh

)]
≥ P (gθn ∈ G△n

) → 1

In other words,

sup
y∈[0,1]

∣∣∣f̂Yθn
(y; gθn)− Ef̂Yθn

(y; gθn)
∣∣∣ = Op

(
1√
nh

)
(20)

With equation (15) and Corollary (3.5) it is easy to show variance of Transformation-

based Rectangular Flat-top Series Estimator is in order of Op

(
1√
nh

)
(see proof of The-

orem 3.14. The bias of the proposed estimator, will be studied in the rest of this section.
Similar to variance, we start from the difference between Ef̂Yθn

(y; gθn) and fYθn
(y; gθn).

Ef̂Yθn
(y; gθn) has been defined in Equation (18), by the Definition 2.1 and the definition

of ωc(s) in equation (5), we can treat Ef̂Yθn
(y; gθn) as a partial sum of Fourier series with

coefficient λc(s) at different points s.

Remark 3.6 If θn → θ0 at rate q(n) where q(n) = n−γ for some γ > 0, then Yθn does
not really satisfy (13). By Condition 3.2, it is obvious that

|fYθn
(1; gθn)− fYθn

(0; gθn)| = O[q(n)], |f ′
Yθn

(1; gθn)− f ′
Yθn

(0; gθn)| = O[q(n)] (21)

Similarly, if θn → θ0 in probability at rate q(n), then

|fYθn
(1; gθn)− fYθn

(0; gθn)| = Op[q(n)], |f ′
Yθn

(1; gθn)− f ′
Yθn

(0; gθn)| = Op[q(n)] (22)

9
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Eq. (21) and (22) imply that Yθn fails to satisfy (13). Furthermore, it means the periodic
extension f̃Yθn

(y; gθn) of fYθn
(y; gθn) is not continuous at y = . . . ,−2,−1, 0, 1, 2, . . ..

As discussed earlier, Ef̂Yθn
(y; gθn) is a partial sum of Fourier series of f̃Yθn

(y; gθn), which
is essentially piecewise continuously differentiable. It is well known the partial sum of
Fourier series has oscillations near the discontinuity point, and this peculiar manner is
called Gibbs Phenomenon. Fortunately the oscillation between the true function and
partial sum of Fourier series is bounded by the size of the jump of the discontinuity at
discontinuous points (more details can be found in Lemma 3.10). In our case it means

the oscillation between Ef̂Yθn
(y; gθn) and fYθn

(y; gθn) at boundaries 0 and 1, are also
bounded by |fYθn

(1; gθn) − fYθn
(0; gθn)| = q(n). This statement implies flat-top series

estimator f̂Yθn
(y; gθn) always has bias at the boundaries of order q(n), which is identical

to the convergence rate of θn → θ0. In this section, the Transformation-based Rectangular
Flat-top Series Estimator can retain the same bias of order h2 in the interior of support.
This bias can be improved to higher order by using infinitely differentiable flat-top series
estimator introduced in the next subsection.
Now recall Definition (5) of ωc(·); when c = 1, ωc(·) is the rectangular flat-top function

that will be denoted simply as

ω(s) =

{
1, |s| ≤ 1

0, |s| > 1.

Recall equation (18) and λc(s) = ωc(hs); it follows that

Ef̂Yθn
(y; gθn) =

∑
|s|≤1/h

ϕYθn
(s)ei2πsy. (23)

We now define

SNh
f̃Yθn

(y; gθn) :=
∑

|s|≤1/h

ϕYθn
(s)ei2πsy = Ef̂Yθn

(y; gθn)

i.e., SNh
f̃Yθn

(y; gθn) denotes the partial sum of Fourier series, where Nh = ⌊1/h⌋.
f̃Yθn

(y; gθn) is the periodic extension of fYθn
(y; gθn) . The following lemmas are show-

ing the bias at boundary points:

Lemma 3.7 Define

ϕ0(x) =
1

2

(
1

2
− x

)
, 0 ≤ x ≤ 1

where ϕ(x) is periodic extension function of ϕ0(x). Let ϕn(x) is the nth partial sum of
Fourier series:

ϕn(x) =

n∑
k=1

sin(2kπx)

2kπ

10
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For any x /∈ Z, i.e. x is away from the discontinuity of ϕ(x), we have

|ϕ(x)− ϕn(x)| = O

(
1

n

)
Notice ϕ(·), ϕ0(·) and ϕn(·) are notations only applied to Lemma 3.7.

Remark 3.8 Notice that if x ∈ [a, b] where [a, b] is an interval away from discontinuity,
then we can also have:

sup
x∈[a,b]

|ϕ(x)− ϕn(x)| = O

(
1

n

)
(24)

Remark 3.9 If f(x) is discontinuous at a point a, then we can define a continuous
function

f∗(x) = f(x)− 2[f(a+)− f(a−)]ϕ(x− a)

where f(a+) = limx→a+ f(x) is right hand limit, and f(a−) is left hand limit. Clearly

f∗(a) = f(a+)+f(a−)
2 and f∗(x) is now continuous, very helpful for showing the next

lemma. The reason we construct f∗(x) by ϕ(x) instead of by a step function is that
ϕn(x) has a better form and more convenient for the proof.

Lemma 3.10 (Theorem F, Hewitt and Hewitt (1979)) Let f be a real-valued periodic
function on the real line R with period 1, and suppose that f and its derivative f ′ are
both continuous except for a finite number of finite jump discontinuities in the interval
[0,1]. let Snf(x) be the nth partial sum of the Fourier series of the function f , computed
at the point x. Let a be a point of discontinuity of f . The distance between overshoot and
undershoot of Gibbs Phenomenon at point a is at most 2

πSi(π)|f(a
+) − f(a−)|, where

Si(x) =
∫ x
0

sin(t)
t dt.

Remark 3.11 Recall (23), i.e., that the expectation of rectangular flat-top series esti-
mator is Fourier series. Lemma 3.10 essentially tells us that, for any 0 < a ≤ b < 1:

sup
y∈[0,a)

⋃
(b,1]

∣∣∣Ef̂Yθn
(y; gθn)− fYθn

(y; gθn)
∣∣∣ ≤ 2

π
Si(π)|f̃Yθn

(0+; gθn)− f̃Yθn
(0−; gθn)|

=
2

π
Si(π)|fYθn

(1; gθn)− fYθn
(0; gθn)|

which, together with (22) yields the following theorem:

Theorem 3.12 If fX(x) is continuously differentiable function on [0, 1], and θn − θ0 =
Op(h

i), i = 1 or 2, then for any 0 < a ≤ b < 1:

sup
y∈[0,a)

⋃
(b,1]

∣∣∣Ef̂Yθn
(y; gθn)− fYθn

(y; gθn)
∣∣∣ = Op(h

i), i = 1 or 2.

Lemma 3.13 Let f be a real valued function on [0, 1] and f̃ is periodic extension of f . If
f̃(x) is continuous (i.e. f(0) = f(1)), f̃ (1)(x) is continuous except jump discontinuities
at x ∈ Z, in another word, f (1)(x) is continuous on [0, 1], but 0 < |f (1)(0)−f (1)(1)| < ∞.

11
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Moreover, f (2) and f (3) is continuous on [0, 1]. Then

sup
x∈[0,1]

|Snf(x)− f(x)| ≤ 1

n
|f (1)(1)− f (1)(0)|+O

(
1

n2

)
Notice all the above lemmas and theorems are discussing the rectangular flat-top series

estimator for transformed random variable Yθn . Recall (16), the following Theorem takes
us back to random variable X:

Theorem 3.14 Assume Condition 3.2 and h = An−1/5. If θn = θ0 + Op(h), then for
any 0 < a ≤ b < 1, the Transformed Rectangular Flat-top Series estimator converges to
true density function:

sup
x∈[a,b]

∣∣∣f̂X(x; gθn)− fX(x)
∣∣∣ = Op

(
1√
nh

+ h2
)

= Op

(
n−2/5

)
Although Theorem 3.14 only requires θn = θ0+Op(h), the bias reaches O(h2) only for

a closed interval inside [0, 1]. Looking back at Theorem 3.12, the bias order at boundary
is still O(h). To get bias order O(h2) at boundary, we need

Corollary 3.15 Assume Condition 3.2, and if θn = θ0+Op(h
2) and h = An−1/5, then

sup
x∈[0,1]

∣∣∣f̂X(x; gθn)− fX(x)
∣∣∣ = Op

(
1√
nh

+ h2
)

= Op

(
n−2/5

)

4. Transformed Infinitely Differentiable Flat-top Estimator

Transformation-based infinitely differentiable flat-top estimator introduced here is our
ultimate estimator, as mentioned in Section 1, it is the one improves order of bias at
interior area of density function support to higher hr. Recall (5), i.e., λc(s) = ωc(hs)
with c < 1 and some function ηω. Eq. (18) shows that the mean of flat-top series
estimator is a modified partial sum of Fourier series. As discussed in previous section,
convergence of nth partial sum of Fourier series at the discontinuity point suffers from
oscillation, also known as Gibbs Phenomenon. This issue does not only negatively affect
convergence at the discontinuity, but also slows global convergence rate.
Now let us introduce a new infinitely differentiable ωc(s); e.g. McMurry and Politis

(2004) defined

ηω(s) = exp

(
−b

(|s| − 1)2
exp

[
−b

(|s| − c)2

])
(25)

for some b > 0 and c < |s| < 1; here, c determines the width of region where the flat-top
function equals one, and b allows us to alter the shape of ηω. The selection of these two
parameters will be discussed in the next section. Function ηω is able to connect the region
where ω(s) is 1 and the region where ω(s) is 0 in a manner such that ω(s) is infinitely
differentiable for all s, even including where |s| = c and |s| = 1. Recall again that the
expectation of a flat-top series estimator is a modified partial sum of Fourier series, and
see the following lemma:

12
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Lemma 4.1 (Theorem 3.4, Gottlieb and Shu (1997)) Let f be piecewise continuous
function, each continuous part has at least r + 1 order continuous derivative. If f only
has one point of discontinuity ξ, and y is one point in [0, 1] away from ξ. Let

fω
n (y) =

∑
s∈Z

ωc

( s

n

)
cn(f)e

i2πsy

where cn(f) is the coefficient of Fourier series of f . Then,

|f(y)− fω
n (y)| ≤

C ·H(f)

nrd(y)r
+

C||f ||L2[0,1]

nr+1/2
(26)

where C is some constant, d(y) = mink=−1,0,1 |y − ξ + k|, and

H(f) =

r∑
l=0

d(y)l
[
f (l)(ξ+)− f (l)(ξ−)

] ∫ ∞

−∞

∣∣∣G(r+1−l)
l (η)

∣∣∣ dη
Where Gl(η) =

ωc(η)−1
ηl .

Notice the condition y is away from ξ is actually defined by d(y) = mink=−1,0,1 |y−ξ+k|.
If y = ξ, the convergence by (26) fails. If y ̸= ξ, the order of convergence is proportional

to 1
d(y) . In addition

∫∞
−∞ |G(r+1−l)

l (η)|dη < ∞ because ωc(η) − 1 = 0 here when |η| ≤ c.

Lemma 4.1 shows that convergence rate of this modified partial sum of Fourier series is
O(n−r) when y is away from discontinuity ξ.

Remark 4.2 By imitating the proof of this Theorem in Gottlieb and Shu (1997), one
can easily show the same result if f does not have discontinuity.

Remark 4.3 One interesting property of such modified partial sum of Fourier series, by
definition of H(f), is that its convergence rate O(n−r) is not influenced by the continuity
of f (l)(·) at ξ. It implies that when practitioners are looking for transformation function,
transformed random variable does not have to satisfy (13). More specifically, suppose
ξ = 0 and discussing f̃Yθn

(·; gθn), the convergent rate O(N−r
h ) of bias remains, even

when f̃Yθn
(·; gθn) and f̃

(1)
Yθn

(·; gθn) are discontinuous at 0 (i.e., even when |f (i)
Yθn

(1; gθn) −
f
(i)
Yθn

(0; gθn)| ≠ 0 where i = 0, 1.). Thus the bias of the point away from discontinuity

always has order O(N−r
h ) = O(hr). But for the points around discontinuity, it is easy to

show that Lemma 3.10 and Theorem 3.12 still apply for infinitely differentiable flat-top
function, and therefore we still suggest to employ an estimator θn = θ0 +Op(h

2) so that
the bias at boundary has order Op(h

2).

By Remark 4.3, the target designed for transformation-based infinitely differentiable
flat-top estimator is relaxed to

fY (0) = fY (1) (27)

Remark 4.4 The definition of H(f) implies Lemma 4.1 does not work for a density
function which is infinite at boundary, or has any order derivative that is infinite at
boundary.

13
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The following Theorem shows transformation-based infinitely differentiable flat-top
estimator improves bias at interior area, and remains order of bias h2 at boundary.
The proof is omitted because it is the same logic as the proof for Theorem 3.14, which
employed Corollary 3.5 and Lemma 3.13. The idea of Theorem 4.5 is also employing
Corollary 3.5 and Lemma 3.13 for boundaries, and employing Corollary 3.5 and Lemma
4.1 for interior area.

Theorem 4.5 Assume Condition 3.2 holds, fX(x) is the density function on [0, 1] and
fX(0) ̸= fX(1). Moreover, fX(x) is rth continuously differentiable and bounded func-
tion on [0, 1]. If θn = θ0 + Op(h

2), then for any x ∈ (0, 1), the Transformed Infinitely
Differentiable Flat-top Series estimator satisfies:

f̂X(x; gθn) = fX(x) +Op

(
1√
nh

+ hr
)
.

In addition, if x = 0 or 1, then

f̂X(x; gθn) = fX(x) +Op

(
1√
nh

+ h2
)
.

Remark 4.6 Notice that both rectangular flat-top estimator and infinitely differentiable
flat-top estimator might produce negative density values; this is a common finite-sample
issue for all higher order kernels that goes away asymptotically. In practical use, we
suggest to reset all negative value to zero, and subsequently re-normalize the density
estimator so that it has area one; see also Politis and Romano (1993). In Sections 7 and
8, we use this correction method for both simulated and real data.

5. Implementation particulars

5.1. Polynomial Transformation

Here and in what follows, we are more interested in the maximum possible reduction in
the bias, and therefore focus on the Transformed Infinitely Differentiable Flat-top Series
estimator defined in the previous section. In this section, we propose to find candidate
of transformation function from the polynomial function family. By Lemma 4.1, recall
the transformation target is just

fY (0) = fY (1).

Let Yθ0 = gθ0(X) be the desired transformation random variable. As before, we want to
constraint gθ0 to be a one-to-one function from [0, 1] to [0, 1], so that X = g−1

θ0
(Y ). Then

by the theorem for derivative of inverse function:

fYθ0
(y) =

fX [g−1
θ0

(y)]

g′θ0 [g
−1
θ0

(y)]
(28)

which implies

fYθ0
(0) =

fX(0)

g′θ0(0)
fYθ0

(1) =
fX(1)

g′θ0(1)

14
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A polynomial function and its coefficients will be selected by solving all the following
equations: 

gθ0(0) = 0

gθ0(1) = 1

g′θ0(x) > 0,when x = 0 or x = 1

g′θ0(x) ≥ 0, 0 < x < 1

fYθ0
(0) = fYθ0

(1)

(29)

For example, if we consider a quadratic polynomial gθ0(x) = ax2 + bx, then gθ0(0) = 0 is
satisfied. We need a+ b = 1 to make gθ0(1) = 1 holds. In addition, since fX(x) is always
non-negative, the last equation implies

fX(0)

b
=

fX(0)

g′θ0(0)
=

fX(1)

g′θ0(1)
=

fX(1)

2a+ b
(30)

and if both fX(0) and fX(1) are positive,

a =
fX(1)− fX(0)

fX(1) + fX(0)
b =

2fX(0)

fX(1) + fX(0)
. (31)

By a simple calculation, g′θ0(x) ≥ 0 always holds for x ∈ [0, 1], no matter if fX(0) > fX(1)
or fX(0) < fX(1). By property of convergence in probability, it is easy to see that if

f̂X(0) = fX(0) +Op(h
2)

f̂X(1) = fX(1) +Op(h
2)

and letting gθn(x) = anx
2 + bn where

an =
f̂X(1)− f̂X(0)

f̂X(1) + f̂X(0)
bn =

2f̂X(0)

f̂X(1) + f̂X(0)
(32)

then gθn(x) = gθ0(x) +Op(h
2) for any fixed x.

Remark 5.1 In this paper, the simple boundary correction method by Jones (1993),
available in R package evmix, is applied to estimate fX(0) and fX(1). This method is
essentially equivalent to the kernel weighted local linear fitting at the boundary, thus
implemented fast and is able to provide very accurate estimate at the boundaries.

5.2. Discussion of Scenarios

Notice that equation (30) can be solved only if fX(0) and fX(1) are both positive. On
the other side, if any one of them is zero, then the solution equation (31) is invalid, and
thus the quadratic polynomial transform introduced in previous section could be also
invalid. We summarize all the scenarios below:

15
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(1) If both of them are zero, first order polynomial function can be applied as trans-
formation function. Solving equation array (29) always results in an identity
function as the transformation function.

(2) If both of them are not zero, quadratic function can be applied as transformation
function, as described in Section 5.1.

(3) If only one of fX(0) and fX(1) is zero, a higher order polynomial function needs
be applied as transformation function. More details are following

Therefore, if we ascertained if the density function has zero value at the boundaries,
then we could select the order of the polynomial for the transformation. For the sake
of simplicity, the simulation and real data analysis in this paper we judge if fX(0) and
fX(1) are zero by visually inspecting histogram and using the estimated fX(0) and fX(1)
by the method described in Remark 5.1.

Remark 5.2 In real practice, we propose to use a nonparametric hypothesis testing
method, which tests whether a density distribution has zero value at point of interest, by
Paparoditis and Politis (2016b).

Remark 5.3 For scenario (3) discussed above, Without loss of generality, assume
fX(1) > fX(0) = 0. Let Z = Xk, where k > 1 is an integer, and first start with
k = 2. Then we judge if fZ(0) = 0. If the conclusion is fZ(0) = 0, then we increase k
by 1, until to a point fZ(0) ̸= 0, denote this k by k0. Transformed quadratic polynomial
flat-top series estimator could be now applied on datasets {Zi}ni=1, i.e. Yθn = gθn(Z), and

f̂Z(z; gθn) = f̂Yθn
[gθn(z); gθn ] · g′θn(z)

Since Z = Xk0 is strictly increasing function on X ∈ [0, 1], the final estimator of fX(x)
is

f̂X(x; gθn , k0) = f̂Z(x
k0 ; gθn , k0) · k0xk0−1

If fX(0) > fX(1) = 0 holds, then let Z = (1 −X)k0, which is a decreasing function on
[0, 1], thus the true density function is

fX(x) = −fZ [(1− x)k0 ; gθn , k0] · [(1− x)k0 ]′

and

f̂X(x; gθn , k0) = f̂Z [(1− x)k0 ; gθn , k0] · k0(1− x)k0−1.

Remark 5.4 For the high order polynomial transformation function in Remark 5.3,
recall (28), if k = k0, then

fZ(z) =
fX(z1/k0)

k0z(1−k0)/k0
.

16
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Figure 1. Plots of ηω(s) with c = 0.05 and different b.

One problem might arise when z(1−k0)/k0 decay faster than fX(z1/k0) as z → 0, i.e.

1

fZ(z)
=

z(1−k0)/k0

fX(z1/k0)
= o(1)

which implies fZ(z) → ∞ as z → 0. In our simulations, the estimator still performs well
even in this situation but this performance is not theoretically supported, and a small
order of bias is not guaranteed.

6. Selection of Parameters

6.1. Selection of shape parameters b and c

The function ηω given in (25) was first introduced by McMurry and Politis (2004) who
suggested to use a relatively small value for b since a large b makes ηω more rectangular-
looking which is undesirable, see Fig.1. Similarly we also find that a large value for c
causes the same problem. In applications, the empirical choices b = 1/4 and c = 0.05 are
recommended.

6.2. Selection of Bandwidth h

The problem of the bandwidth selection over the whole compact support needs further
study. The first question arises by Theorem 4.5, i.e., the bias orders at the boundary and
the interior are different if r > 2. If a global bandwidth h1 = An−1/(2r+1) is selected,
where A1 is a constant, then in the interior area we have

f̂X(x; gθn)− fX(x) = Op

(
n− r

2r+1

)
.

17
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With same bandwidth h1, but at the boundaries,

f̂X(x; gθn)− fX(x) = Op

(
n− 2

2r+1

)
Compare to boundary correction kernel estimators introduced in Section 1, that achieve
order of mean squared error (MSE) Op

(
n−2/5

)
, MSE of Transformed Flat-top Series

estimator at interior area reaches higher order, but worse order at two boundaries. If we
select two different bandwidths, one for interior region and one for boundaries, then a
discontinuity issue takes place at the border of these two regions.

Remark 6.1 Another possibility is defining a local bandwidth h = h(t), such that

h(t) =


hinterior, δ ≤ t ≤ 1− δ

hboundary, t = 0, 1

γh(t), 0 < t < δ, or 1− δ < t < 1

Where γh(t) a very smooth function we select to make h(t) continuous, further study on
validity of this idea is needed.

For simplicity, all the simulation and real data analysis in this paper, we employ band-
width hinterior that is optimal for the interior area. Note that selection of the bandwidth
hinterior is nontrivial, Politis (2003) showed the inverse of bandwidth of flat-top series
estimator performs as a threshold in the frequency domain. If the periodic extension
f̃X(x) is very smooth, the characteristic function ϕX(s) will decay to zero very fast, and
be negligible when |s| > 1

h . The bandwidth thus should be chosen so that the flat-top
taper leaves the characteristic function at low frequencies unchanged (due to flat-top
region) while damping out the characteristic function at high frequencies. With this in
mind, as in Politis (2003), we propose the following adaptive bandwidth choice rule of
thumb.

(1) Pick hboundary to minimize ||θn−θ0|| (see (32), and Remark 5.1); obtain transform
function gθn(·) and transformed data array Yθn = gθn(X).

(2) Let ρ(s) = ϕYθn
(s)/ϕYθn

(0), and ρ̂(s) = ϕ̂Yθn
(s)/ϕ̂Yθn

(s). Let m̂ be the smallest

positive real number such that |ρ̂(m̂+s)| < 2
√
log n/n, for all s ∈ (0,Kn), where

Kn is a positive nondecreasing real-valued function of n such that Kn = o(log n).
Then, let hinterior = 1/(2m̂).

(3) Estimate fYθn
(·; gθn) by (17) with infinite differentiable flat-top function and local

bandwidth hinterior. Finally obtain estimator of fX(·) by (16).

Note that the adaptive bandwidth choice method might not always be the most appro-
priate for Transformed Flat-top Series estimator when the density function is not smooth
enough. Moreover, the periodic extension of estimated transformed function fYθn

(y; gθn)
is not really continuous, and thus its characteristic function might not always decay fast.
As an alternative, we may estimate the bandwidth by least squares cross validation, i.e.,
choose the bandwidth that minimizes∫ 1

0
[f̂Yθn

(y; gθn)− fYθn
(y; gθn)]

2dy =

∫ 1

0
f̂2
Yθn

(y; gθn)dy − 2

∫ 1

0
f̂Yθn

(y; gθn)fYθn
(y)dy

+

∫ 1

0
f2
Yθn

(y; gθn)dy.
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The last term on the right-hand-side does not dependent on h; the first term is easy to
compute because this integral is on closed interval [0, 1]; we will use the leave-one-out
method to estimate the second term, i.e.,∫ 1

0
f̂Yθn

(y; gθn)fYθn
(y; gθn)dy ≈ 1

n

n∑
i=1

f̂−i
Yθn

(yi; gθn)

where f̂−i
Yθn

is the flat-top series estimator computed by omitting observation yi from the

sample.

7. Simulation

In this section, we simulate data from six different selected densities; see Table 1 below:

Table 1. Function Form of 6 Densities for Simulations.

# Density Description

1 Beta(4,4) fX(0) = fX(1) = 0

2 1
2Beta(1,1)+

1
2Beta[1/4,3/4](4, 4) fX(0) = fX(1) > 0

3 Truncated N
(
0, 14

)
fX(0) > fX(1) > 0

4 Beta(1,3) fX(0) > fX(1) = 0

5 Truncated N
(
−1, 14

)
fX(0) > fX(1) ≈ 0

6 1
2Beta[0,1/2](4, 4) +

1
2Beta[1/2,1](4, 4) Bimodal Distribution

Beta(·, ·) is the Beta density distribution, Beta[a,b](·, ·) denotes the corresponding Beta
density function rescaled to interval [a, b]; “truncated” means the original density func-
tion is truncated to interval [0, 1]. Figure 2 shows the shape of the six probability density
functions as well as examples of a few corresponding Transformed Flat-top Series esti-
mators. As mentioned in Section 5.2, for density 1 and 6 we use the identity function
as transformation function. For Density 2 and 3 we use quadratic function as transfor-
mation function introduced in Section 5.1. Density 4 and 5 we use two higher order
polynomials as transformation function discussed in Remark 5.3 (density 4 applied 4th
order polynomial and density 5 applied 6th order polynomial).
We investigate the finite sample performance of proposed Transformed Flat-top Series

estimator using Monte Carlo, and compare its performance to other popular estimators
of density with bound support. In addition we apply re-normalization to eliminate any
negative value appeared in those estimator of density function, as we brought up earlier
in Remark 4.6. The list of estimators are following:

(1) f̂Beta denotes the first beta kernel estimator of Chen (1999), and the bandwidth
is estimated by rule of thumb bandwidth of Jones and Henderson (2007).

(2) f̂copula denotes the Gaussian copula based estimator of Jones and Henderson
(2007), and the bandwidth is estimated by rule of thumb bandwidth of Jones
and Henderson (2007).

(3) f̂TKE denotes transformed kernel estimator (TKE) of Wand et al. (1991), and the
bandwidth is estimated by plug-in bandwidth of Wen and Wu (2015).
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(4) f̂MTKE denotes modified transformed kernel estimator (MTKE) of Wen and Wu
(2015), and the bandwidth is estimated by plug-in bandwidth of Wen and Wu
(2015).

(5) f̂CV denotes the Transformed Flat-top Series estimator with bandwidth selected
by cross-validation.

(6) f̂abc denotes the Transformed Flat-top Series estimator with bandwidth selected
by adaptive bandwidth choice method.

Figure 2. Example of simulations on 6 different styles of densities: Black lines are true density function, each red
line is an estimator of density function.

For each density function, we conduct simulations with sample size n = 100 and repli-
cate them 1000 times. Since TKE and MTKE sometimes explode at 0 and 1, we evaluate
average of mean integrated square errors (AOMISE) of estimators on an equally spaced
grid on [0.001, 0.999] with an increment 0.001. Figure 2 shows the first five estimators.
The simulation results are presented in Table 2 where all the values have been multiplied
by 1000 to be better readable. For each density, the minimum AOMISE is highlighted in
bold font. Estimated standard errors of the listed AOMISE are given in parentheses.
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Table 2. Simulation Results with Sample Size n = 100.

Average MISE (Std. Dev.) ×10−3

Methods Density 1 Density 2 Density 3 Density4 Density 5 Density 6

f̂Beta

61.92

(32.30)

82.10

(41.89)

23.59

(18.77)

20.28

(16.41)

42.72

(35.80)

193.07

(33.59)

f̂copula
38.05

(25.04)

92.05

(45.20)

34.33

(22.81)

57.19

(34.12)

108.38

(74.55)

140.04

(31.22)

f̂TKE

42.65

(27.23)

98.38

(48.47)

60.67

(41.01)

85.31

(67.13)

121.21

(97.87)

158.00

(39.61)

f̂MTKE

31.87

(25.48)

93.98

(40.30)

35.42

(43.84)

46.01

(26.30)

101.29

(51.72)

94.03

(76.94)

f̂CV

41.25

(65.74)

74.95

(70.59)

27.49

(43.58)

51.41

(73.75)

59.40

(104.77)

60.46

(60.53)

f̂abc
18.68

(17.98)

124.69

(85.08)

17.66

(21.30)

39.27

(41.33)

45.99

(57.76)

53.83

(86.02)

Remark 7.1 A similar simulation was performed on interval [0, 0.001]
⋃
[0.999, 1], and

showed f̂copula, f̂TKE and f̂MTKE all had significantly greater AOMISE than other can-

didates. f̂Beta, f̂CV and f̂abc had reasonable good results because they all have bias in the
order of Op(h

2) at boundaries.

The simulation results are consistent with the theoretical analysis. Among all the
estimators, flat-top estimators provide best AOMISE for 4 out of 6 densities when n =
100, and they are Density 1, 2, 3, 6 (see Table 2 numbers in bold). All these four densities
either satisfy fX(0) = fX(1) or fX(0) ̸= fX(1) > 0. In these four densities, adaptive
bandwidth is powerful as in the previous literature on flat-top based estimators. However,
density 2 only has up to 2nd continuous derivative which limits the order of bias that
adaptive bandwidth choice method can achieve; also see Politis (2003). Although cross-
validation performs in a stable manner, it might not be able to yield h = A1n

−1/5 and
is implemented much slower.
For both density 4 and 5, that Beta kernel estimator provides the best AOMISE. Trans-

formation Based Flat-top Estimator with adaptive bandwidth choice and beta kernel give
second best AOMISE and work reasonably well. We recommend that the selection of high
order polynomial function as transformation function introduced in Section 5.2 deserves
more future research work.

8. Real Data Examples

We are looking into two different styles of data, one seems has a density distribution with
no boundary effect and the other one has a density distribution with very significant
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boundary effect. We evaluate Transformed Flat-top Series estimators on those data by
comparing to other competitor estimators.

8.1. Data Without Boundary Effect: Financial Returns

In this section, we focus on three representative datasets of daily relative returns taken
from a foreign exchange rate, a stock price, and a stock index; a description of our main
datasets is as follows.

• Dataset 1: Foreign exchange rate. Daily returns from the Yen vs. Dollar
exchange rate from January 1, 1988 to August 1, 2002; the data were downloaded
from Datastream. The sample size is 3600 (weekends and holidays are excluded).

• Dataset 2: Stock index. Daily returns of the S&P500 stock index from October
1, 1983 to August 30, 1991; the data are available as part of the garch module
in Splus. The sample size is 2000.

• Dataset 3: Stock price. Daily returns of the IBM stock price from February
1, 1984 to December 31, 1991; the data are again available as part of the garch

module in Splus. The sample size is 2000.

Letting Pt denote the price of an asset at time t, the relative return at time t is defined
as Xt = (Pt −Pt−1)/Pt−1. Note that Xt ≥ −1 by construction since the price Pt can not
be negative. In principle, Xt is a weakly dependent and strictly stationary time series
random variable, see chapter 10 in Politis (2015), thus its density estimation has the same
large-sample variance and bias as i.i.d. random variable, see Adams and Nobel (1998)
and Hallin and Tran (1996). The theorems introduced in this paper are based on variance
and bias calculation, therefore Transnformed Flat-top Series estimator can be applied
to financial returns. In addition Xt is not bounded above; however, when Xt takes on
extreme values, it is typically due to crashes in which case the extreme value is towards
negative values; see, for example, the extreme value of about -20% associated with the
crash of 1987 in the middle of Datasets 2 and 3. Since extreme values are in the negative
direction (although it is the bounded direction), it is safe to assume that the positive
direction satisfies the symmetric bound, i.e., that Xt ≤ 1. Therefore, in what follows we
assume that Xt has density fX(x) over the compact support [−1, 1]; We also judge for
all three datasets fX(−1) = fX(1) = 0 by visual inspection on the histogram. Plots and
further details on the three datasets can be found in Politis (2015). We apply the same
kernel estimators and bandwidth selection as the methods applied in the Section 7. Since
sample sizes of all three datasets are over one thousand, all methods are supposed to
have small mean integrated squared errors. If we were to plot the estimated densities, it
would be difficult visually to tell the differences among these methods. Thus, we propose
a k-fold cross validation method to compare methods effectively; the idea is as follows:

(1) Randomly cut original dataset to K non-overlapping subsets of roughly equal
size. Call each subset a partition.

(2) Use data from partition number i (say) as ‘training data’ in order to estimate the
density function, and use the rest K−1 partitions as testing data; more precisely,
use the histogram of the data from all remaining K − 1 partitions as the ‘true’
density function that gives the benchmark to compare the estimated density from
partition number i.

(3) Estimate MISE (mean integrated squared error) by using estimated density func-
tion from training data and histogram as true density function.

(4) Repeat Steps 1 to 3 for all possible i, and obtain K MISE; calculate AOMISE
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Figure 3. Example of Transformed Flat-top Series estimator applied on financial return data.

(average of mean integrated squared error) by taking average of K MISE.

For the above-mentioned histogram, we take the number of bins M equal

M = ⌈ R

3.49s
N1/3⌉

where R is a fixed range of the data (for all 3 datasets here, R = 2), s is sample standard
deviation, N is the sample size of the data to be used; for more details, see Scott (1979).
Then, our optimal histogram is built by 9 partitions of data, and becomes the reference
close to truth.
For Transformed Flat-top Series estimator, we apply identity function as transformation
function. Similar as Section 7, two different bandwidth selection methods were chosen to
be applied, the adaptive and cross-validation. An example of Transformed Flat-top Series
estimators from 1 partition of Dataset 1 versus histogram of 9 partitions of Dataset 1
is plotted in Figure 3. Notice the density estimator has been renormalized to eliminate
negative values described in Remark 4.6. Figure 4 shows the same example but fit by
Beta, Gaussian copula, TKE and MTKE. Since all these four methods were designed to
handle data with unit support, we normalize all 3 datasets to make them all fall in unit
interval, and then transform their density estimator back to original support. All these
methods are working well with the exception of the Beta kernel estimator that seriously
underestimates the magnitude of the peak.
Table 3 gives the results of the 10-fold cross validation. As already mentioned even

by visual inspection, the Beta estimator is the worst. The flat-top estimator f̂abc is the
best with Dataset 1 (foreign exchange), and close to the best with Dataset 3 (IBM stock
price); the flat-top estimator that uses cross-validated bandwidth is also competitive.
Note that the TKE and MTKE estimator perform both well in Table 3. Nevertheless,
as mentioned earlier, TKE and MTKE will explode and even produce infinite value at
the two boundaries of support, even the boundaries are apparently 0. This explosion is
not reflected on AOMISE vs. histogram comparison because the histogram never has a
bin centered at the boundary.
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Figure 4. Example of competitor estimators applied on financial return data.

Table 3. Real Data Performance by 10-fold cross validation.

Average MISE ×10−3

Methods Dataset 1 Dataset 2 Dataset 3

f̂Beta 0.231 0.219 0.182

f̂copula 0.147 0.172 0.177

f̂TKE 0.141 0.167 0.154

f̂MTKE 0.148 0.168 0.159

f̂CV 0.145 0.176 0.169

f̂abc 0.136 0.175 0.157

8.2. Data With Boundary Effect: Ratio of White Student Enrollment

In this section we evaluate Transformed Flat-top Series estimator by applying to the data
set which records the ratio of white student enrollment of 56 public schools in Nassau
County, New York for the 1992-1993 school year, and consequently restricted on unit
interval. It was an example for illustrating boundary problem by Simonoff (1996), and
used to compare among different methods by Geenens (2014) and Wen and Wu (2015).
In addition, it is interesting to assess if public schools were segregated by race in the 90’s
by estimating the density of white student enrollment ratios.
We apply the same kernel estimators and bandwidth selection from Section of simula-

tion and plot them in Figure 5 and 6. The histogram of the data is also presented in the
same plots. This data set has mean 0.778, standard deviation 0.249, median 0.867, 80%
of the data are greater than 0.707. It is apparently the density function at 0 and 1 are
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Figure 5. Example of Transformed Flat-top Series estimator applied on student enrollment data.

not 0 based on histogram, thus a quadratic polynomial function is estimated as trans-
formation function. Notice the result we present here is after re-normalization described
in Remark 4.6.
Figure 6 shows the fit by Beta, Gaussian copula, TKE and MTKE. Both Beta and

Gaussian copula fail to fit and underestimate the shape of peak. TKE and MTKE perform
both good, especially at the area Transformed Flat-top Series estimator is 0 due to re-
normalization, but did explode and produce infinite value at the two ends of unit support.

9. Conclusion

A Transformed Flat-top Series estimator is proposed for density function in compact sup-
port. This method is developed from boundary correction method, transformed method
and Flat-top series estimator. We also establish the theoretical properties and show its
higher order of bias in the interior region of the support. We use adaptive bandwidth
choice and cross-validation as for bandwidth selection and present their performance
in the simulation, and compare them to four other popular estimators for density with
compact support by simulation and empirical example. In summary, the Transformed
Infinite Differentiable Flat-top Series estimator have the best AOMISE among the se-
lected other methods for density with compact support. For densities with same values
or positive values at two boundaries, it did not reach to the same high performance for
densities with zero at only one boundary. Development of the proposed estimators on
density with a pole or infinite derivative, and extension to multivariate density problem
will be pursued in our future work.
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Figure 6. Example of competitor estimators applied on student enrollment data.
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