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Abstract

The non-linear autoregressive (NLAR) model plays an important role in modeling and predicting
time series. One-step ahead prediction is straightforward using the NLAR model, but the multi-step
ahead prediction is cumbersome. For instance, iterating the one-step ahead predictor is a convenient
strategy for linear autoregressive (LAR) models, but it is suboptimal under NLAR. In this paper,
we first propose a simulation and/or bootstrap algorithm to construct optimal point predictors
under an L1 or L2 loss criterion. In addition, we construct bootstrap prediction intervals in the
multi-step ahead prediction problem; in particular, we develop an asymptotically valid quantile
prediction interval as well as a pertinent prediction interval for future values. In order to correct
the undercoverage of prediction intervals with finite samples, we further employ predictive—as
opposed to fitted—residuals in the bootstrap process. Simulation and empirical studies are also
given to substantiate the finite sample performance of our methods.

Keywords: Bootstrap, NLAR forecasting, Pertinence prediction.
MOS subject classification: 62M10, 62F40.

1 Introduction

In the domain of time series analysis, accurate forecasting based on observed data is an important topic. Such
single- or multi-step ahead predictions play an important role in forecasting crop yields, stock prices, traffic
volume, etc. For Linear Autoregressive (LAR) models with finite order and independent, identically distributed
(i.i.d.) or martingale difference innovations, it is easy to construct the optimal (with respect to L2 risk) multi-
step ahead predictor by iterating the one-step ahead predictor. However, the LAR model may not be enough to
analyze complicated data in the real world. As pointed out by the work of De Gooijer and Kumar (1992) and
Tjøstheim (1994), there are various occasions when prior knowledge indicates the data-generating process is in
a non-linear form; see the review of Politis (2009) for example. Furthermore, there are several ways to test the
hypothesis of linearity of the data at hand; see the work of Berg, McMurry, and Politis (2012) for traditional
and bootstrap/subsampling approaches.

The analysis of Non-linear Autoregressive (NLAR) models can be traced back to the work of Jones and Cox
(1978). Although the one-step ahead optimal (with respect to L2 risk) prediction of (causal) NLAR models is
usually easy to obtain, the optimal (no matter in L2 or L1 loss) multi-step ahead prediction can not be obtained
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by the iterative procedure we employ for LAR models, even when the NLAR model parameters are known.
To resolve this issue, Pemberton (1987) proposed a numerical integration approach to get the exact solution.
However, his approach assumes that the distribution of innovation is known, which is usually not realistic in the
real world. Besides, this numerical approach can be very computationally heavy for long-horizon predictions.
Instead, some suboptimal ideas were proposed, such as estimating a model by minimizing multi-step ahead mean
squared errors and then making predictions directly; this multi-step estimation criterion can improve the long-
horizon forecasting accuracy compared to the standard 1-step ahead error minimization strategy when models
are misspecified for the data generation process; see the work of Zhang, Patuwo, and Hu (1998), Clements and
Hendry (1996) and Lee and Billings (2003) for a discussion.

The work of Guo, Bai, and An (1999) further shed some light on the multi-step ahead prediction of NLAR
models. Taking advantage of the true innovation distribution or the empirical residual distribution, they pro-
posed an analytic predictor that asymptotically converges to the optimal predictor. Nevertheless, their analyses
are limited to the L2 optimal point prediction and are lacking details when the model is unknown. In several
applied areas, e.g. econometrics, climate modeling, water resources management, etc., data might not possess a
finite 2nd moment in which case optimizing L2 loss is vacuous. For example, financial returns typically do not
possess a finite 4th moment; hence, to predict their volatility which is usually mimicked by its 2nd moment, it
is not appropriate to rely on L2 optimal prediction since the MSE of predicting squared returns is essentially a
fourth moment. For all such cases—but also of independent interest—prediction that is optimal with respect
to L1 loss should receive more attention in practice; see detailed discussions from Ch. 10 of Politis (2015).

Unfortunately, the aforementioned numerical integration and analytic methods for NLAR prediction can
not be extended to L1 optimal prediction directly. In addition, even for linear autoregressions, the multi-step
ahead L1 optimal predictor is elusive since iterating the one-step ahead predictor does not work in the L1 loss
setup. Beyond the point prediction, we should also be concerned about the accuracy of our point predictions. In
analogy to the construction of Confidence Intervals (CI) in estimation problems, we may attempt to measure the
accuracy of point predictions by constructing Prediction Intervals (PI); see the formal definition of such measures
in Section 2. In the paper at hand, we provide an algorithm to make prediction inferences for a popular type
of NLAR model with a specific structural form that contains separate parametric mean and volatility/variance
functions. We also indicate the potential extension of our algorithm to a more general class of NLAR models.
When the model and innovation distribution are known, we can deploy Monte Carlo (MC) simulation to achieve
consistent forecasting. When the model is unknown—which is typically the case—we need to fit the model to
get estimated parameters and innovation distribution. Throughout, we assume that the order of the parametric
non-linear time series model p is known; when we say the model is unknown, we mean that the corresponding
parameter values of this model are unknown. Performing MC simulation using the fitted model and estimated
innovation distribution effectively becomes a bootstrap method; see the book Kreiss and Paparoditis (2023) for
discussions of the bootstrap technique.

For a meaningful prediction in the time series domain, all future predictions must be conditional on the
latest p observed data where p is the order of the NLAR model. Thus, to construct a reasonable predictor in the
bootstrap world, we need to make sure predictors of the bootstrap series are also conditional on the exact same
p data; this is the idea of the forward bootstrap proposed by Politis (2015) and Pan and Politis (2016). This
forward bootstrap method is similar to the density forecast of future values—see Chen, Yang, and Hafner (2004),
Manzan and Zerom (2008), and Pascual, Romo, and Ruiz (2001) who applied various approaches to do density
forecast. To quantify the point prediction accuracy, the straightforward Quantile Prediction Interval (QPI)
based on quantile values of future value distribution is typically characterized by finite-sample undercoverage
because it does not take the variability of the model estimation into account; see Wang and Politis (2021) made
a related discussion. Recently, Politis (2015) introduced the notion of a so-called Pertinent PI (PPI) that has
a better empirical Coverage Rate (CVR) in finite-sample cases; see more explanations about the necessity of
capturing estimation variability in Section 3. To implement the PPI, we need to impose more requirements on
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the bootstrap series, i.e., we require that the estimated model in the bootstrap world is also consistent with
the true one. To check the consistency, the bootstrap series should possess some mixing or weak dependence
properties. As developed in the work of Franke, Kreiss, Mammen, and Neumann (2002), it is possible to get
a self-ergodic bootstrap series that also approximates the true series via a non-linear autoregressive residual
bootstrap (AR bootstrap) approach. In the paper at hand, we focus on the forward-bootstrap prediction of
parametric non-linear models; see Politis and Wu (2023) for prediction based on non-parametric models. To
further boost the empirical CVR of our bootstrap-based PPIs, we may use predictive (instead of fitted) residuals
analogously to the successful construction of PI for regression and autoregression with predictive residuals in
work of Politis (2013) and Pan and Politis (2016); the formal definition of predictive residuals is presented in
Section 2.2.

The paper is organized as follows. In Section 2, we introduce the forward bootstrap methods to predict a
specific class of NLAR model for two situations in which the model and innovation information are known or
unknown. Under standard assumptions, we show the consistency of optimal point prediction and asymptotic
validity of QPI. In Section 3, we present the algorithm to build the PPI and check its asymptotic pertinence. In
Section 4, some simulation results will be presented. Empirical studies are deplored in Section 5. Conclusions
are given in Section 6. The proofs of theorems from Sections 2 and 3 are given in Appendix C of the additional
Supporting Information.

2 Prediction inference for a specific NLAR of interest

In this paper, we suppose that we observe T + p number of real-valued sample {X−p+1, X−p+2, . . . , XT }. Here
and in all that follows, we are exclusively interested in analyzing the NLAR model of the specific form:

Xt = ϕ(Xt−1) + σ(Xt−1)ϵt, (1)

where {ϵt} are i.i.d. innovations with mean zero, and Xt−1 represents vector {Xt−1, . . . , Xt−p}. Model (1)
possesses two components. One is ϕ(·) —that represents the conditional mean— plus the second one which is
the variance function multiplying the innovations ϵt. Under Eq. (1), the innovations are explicitly defined and
thus easily estimable as residuals after model fitting. If σ(Xt−1) ≡ 1, then we have an NLAR with homoscedastic
errors. For simplifying the notation, we consider a common order p for mean and variance functions. We first
impose some standard assumptions and suppose they are met throughout this paper:

A1 ϕ(·) and σ(·) are continuous functions from Rp to R, and σ(·) is positive and bounded. Moreover, for
quantifying the boundness of Xt in probability to serve the proof, we assume that there are CM < ∞
with E(|σ(X0)ϵ1|M ) ≤ CM for all M < ∞, where X0 is the starting point of the time series.

A2 {ϵt} are i.i.d. with distribution Fϵ, satisfying E(ϵt) = 0 and E(ϵ2t ) = 1. However, if σ(Xt−1) ≡ 1

(homoscedastic errors case), then E(ϵ2t ) is not restricted to equal one, but needs to be finite.

A3 For all t, ϵt are i.i.d. innovations and are independent of the initialization X−p+1, . . . , X0.

We attempt to propose a method to make prediction inferences with Eq. (1), especially for multi-step ahead
predictions. As known to us, for a stochastic process {Xt}Tt=−∞, the L2 optimal predictor of XT+h, h ≥ 1,
given the (infinite) past is:

E[XT+h|Xs, s ≤ T ], (2)

when it exists. As pointed out by Pemberton (1987), this result does not require the stochastic process to be
stationary. Since we assume the order of the NLAR model p is finite, Eq. (2) can be simplified to:

E[XT+h|XT , . . . , XT−p+1]. (3)
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Similarly, the L1 optimal predictor of XT+h given past history is the conditional median:

QXT+h|XT ,...,XT−p+1
(1/2), (4)

where QXT+h|XT ,...,XT−p+1
(·) is the conditional quantile function of XT+h.

We will call Eq. (3) and Eq. (4) the exactly optimal point predictors based on L1 or L2 loss. However, it
is hard to compute them directly. Subsequently, we will propose the simulation or bootstrap-based method to
find an approximation of the exactly optimal prediction. Moreover, we also consider the PI of future values; an
asymptotically valid PI of XT+h with (1− α)100% CVR given past history can be defined as:

P(L ≤ XT+h ≤ U)
p→ 1− α, as T → ∞, (5)

where L and U are lower and higher PI bounds, respectively. Implicitly, the probability P should be understood
as the conditional probability given the latest p observations. We typically construct a PI that is centered at
some meaningful point predictor X̂T+h. An asymptotically valid centered PI with (1−α)100% CVR given past
history can then be defined as:

P(X̂T+h +Rα/2 ≤ XT+h ≤ X̂T+h +R1−α/2)
p→ 1− α, as n → ∞, (6)

where Rα/2 and R1−α/2 denote the lower α/2 and 1−α/2 quantiles with respect to the conditional distribution
of the so-called predictive root: XT+h− X̂T+h. We should notice that the distribution of the predictive root may
not be symmetric. Thus, the PI defined by Eq. (6) may not be symmetric, but it is equal-tailed and centered
around some meaningful points, e.g., optimal L1 or L2 predictions. Notice that it is easy to create symmetric
PIs, but to create shortest PIs is not feasible computationally; with symmetric predictive root distribution,
equal-tailed property implies the shortest property.

Remark. Beyond providing the prediction inference for the location-scale model (1), our forward bootstrap
prediction algorithm could be extended to work for a general NLAR model of the type Xt = G(Xt−1, ϵt) for
some function G(·, ·). We present the corresponding algorithm in Appendix B of the additional Supporting
Information. However, the application of the forward bootstrap prediction algorithm on the general NLAR
model hinges on the ability to estimate the function G(·, ·), and the distribution of the errors ϵt.

To conduct statistical inference for non-linear time series data in the following sections, we need to find
a tool to quantify the degree of asymptotic independence of time series. Popular choices are various mixing
conditions. For simplifying proofs and relying on existing results, in this paper, we focus on time series with
geometrically ergodic property which is equivalent to β-mixing condition with at least exponentially fast mixing
rate; see Bradley (2005) made a detailed introduction of different mixing conditions and ergodicity. We further
assume:

A4 The probability density function of innovation fϵ(·) is continuous and everywhere positive.

A5 The conditional mean and volatility functions satisfy the inequalities:

sup
||x||2≤K

|ϕ(x)| < ∞ ; sup
||x||2≤K

|σ(x)| < ∞, for each K > 0, (7)

where x ∈ Rp, and || · ||2 is the Euclidean norm.

A6 There exists a positive number λ < 1 and a constant C such that the conditional mean function satisfies:

|ϕ(x)| ≤ λmax{|x1|, . . . , |xp|}+ C. (8)

A7 The conditional variance function satisfies:

lim
||x||2→∞

σ(x)

||x||2
= 0. (9)

The deduction to get the geometrically ergodic property under the above sufficient conditions is presented in
Appendix A of the additional Supporting Information. We refer readers to the work of Stockis, Franke, and
Kamgaing (2010) for other conditions to guarantee the geometric ergodicity.
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2.1 Prediction inference for NLAR models with known form

We start with a relatively simple case, i.e., prediction inference for known NLAR models. To simplify the
notation, we only consider the homoscedastic NLAR model in the main text, the analogous algorithms and
theorems that serve for NLAR models with heteroscedastic errors can be shown similarly. In short, we deploy
the Monte Carlo simulation to approximate the exact optimal point prediction or PI conditional on the past
history. The procedure is summarized in Algorithm 1.

Algorithm 1 h-step ahead prediction of XT+h under homoscedastic Eq. (1) of known form

Step 1 Write homoscedastic Eq. (1) as XT+1 = ϕ(XT , . . . , XT+1−p) + ϵT+1; Iterate this equation
to find the expression of XT+h:

XT+h = G (XT , . . . , XT−p+1; ϵT+1, . . . , ϵT+h), (10)

where we used the notation G (XT , . . . , XT−p+1; ϵT+1, . . . , ϵT+h) to specify that XT+h de-
pends on XT , . . . , XT−p+1 and {ϵi}T+h

i=T+1.
Step 2 Simulate {ϵ∗T+1, . . . , ϵ

∗
T+h} i.i.d. from Fϵ.

Step 3 Plug the {ϵ∗t }T+h
t=T+1 from Step 2 and {XT−p+1, . . . , XT } into Eq. (10) to obtain a pseudo-

value of XT+h given by G (XT , . . . , XT−p+1; ϵ
∗
T+1, . . . , ϵ

∗
T+h).

Step 4 Repeat Steps 2 and 3 M times to get M pseudo values {X(1)
T+h, . . . , X

(M)
T+h}. The L2 and L1

optimal predictor can be approximated by 1
M

∑M
i=1X

(i)
T+h and Median(X(1)

T+h, . . . , X
(M)
T+h),

respectively. Furthermore, a QPI can be built by taking corresponding quantiles of the
empirical distribution of {X(1)

T+h, . . . , X
(M)
T+h}.

We first show that the mean of pseudo values derived from Algorithm 1 can be consistent with the exactly
L2 optimal predictor. This is formalized in Theorem 2.1.

Theorem 2.1. Under assumptions A1-A6, the point predictor of homoscedastic Eq. (1) as X̂L2

T+h = 1
M

∑M
i=1 X

(i)
T+h

converges to the exactly L2 optimal predictor almost sure as M tends to infinity. Here, X(i)
T+h = G (XT , . . . , XT−p+1;

ϵ
(i)
T+1, . . . , ϵ

(i)
T+h); {ϵ

(i)
T+1, . . . , ϵ

(i)
T+h} are i.i.d. with common distribution Fϵ for all i = 1, . . . ,M .

Next, inspired by the proof of Guo, Bai, and An (1999), we can show the median of pseudo values in Algo-
rithm 1 is also consistent with the exactly L1 optimal predictor. We can also build a PI that is asymptotically
valid with any arbitrary CVR. To achieve this goal, we need additional one mild assumption:

A8 The mean function ϕ(·) is uniformly continuous.

This will lead to Theorem 2.2 below.

Theorem 2.2. Under assumptions A1-A6, if we take the point predictor as X̂L1

T+h = Median ({X(1)
T+h,. . . , X

(M)
T+h}),

it is consistent to the exactly L1 optimal predictor when M converges to infinity. Here, X(i)
T+h and {ϵ(i)T+1, . . . , ϵ

(i)
T+h}

have the same definitions with Theorem 2.1. We can further show that the QPI is asymptotically valid with any
arbitrary CVR.

2.2 Prediction inference for NLAR models with unknown parameters

We further consider the case that the NLAR model (1) has a known parametric specification but the parameter
values are unknown. After estimating the model by the Least Square (LS) technique, we show that the prediction
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inference can also be built with standard assumptions. We assume that the NLAR model (1) has the parametric
specification

Xt = ϕ(Xt−1, θ1) + σ(Xt−1, θ2)ϵt, (11)

where the functional form of ϕ(·, ·) and σ(·, ·) is known but the real-valued parameters θ1 and θ2 are unknown.
For carrying out prediction inference, we assume:

A9 The parameter estimator θ̂1 and θ̂2 are consistent to θ1 and θ2 respectively.

A10 For all x in the support X of Xt, the non-linear functions ϕ(x, ·) and σ(x, ·) are both Lipschitz continuous
with respect to their 2nd argument. The Lipschitz constants could be different.

A11 The probability density of innovation fϵ(x) satisfies supx fϵ(x) < ∞ and
∫
|fϵ(x) − fϵ(x + c)|dx = O(c)

for finite c.

The reason for choosing the LS method and the procedure of estimation will be discussed in Section 3.2. First,
we want to show the Cumulative Distribution Function (CDF) of innovations can be approximated by the
empirical CDF of residuals. Their relationship can be summarized in Lemma 2.1.

Lemma 2.1. Under A1–A7, A9–A11, the CDF of innovation Fϵ(x) can be approximated by the empirical CDF
of residuals F̂ϵ(x) in a way:

sup
x

|F̂ϵ(x)− Fϵ(x)|
p→ 0, (12)

where F̂ϵ(x) :=
1
T

∑T
i=1 1ϵ̂i≤x; 1(·) is the indicator function, and we define the residual ϵ̂i =

(Xi−ϕ(Xi−1,θ̂1))

σ(Xi−1,θ̂2)
for

i = 1, . . . , T .

With Lemma 2.1, we can build a QPI or find approximations of optimal L1 and L2 predictors. Of course,
for this case, we need to apply the forward bootstrap prediction method. The algorithm is similar to the
Algorithm 1. The difference is that we replace the true models by estimators ϕ(Xi−1, θ̂1) and σ(Xi−1, θ̂2),
respectively; we also use the corresponding residual distribution F̂ϵ to approximate Fϵ. The asymptotic validity
of QPI and consistency of optimal L1 or L2 point prediction are guaranteed by Theorem 2.3 under the additional
assumption of mean and volatility functions given below:

A12 For all parameter values in their respective domains, the non-linear functions ϕ(·, ·) and h(·, ·) are con-
tinuous w.r.t their first argument.

Theorem 2.3. Under A1-A7, A9–A12, let {Xt} satisfy Eq. (11). For h ≥ 1 we have:

sup
|x|≤cT

∣∣∣FX∗
T+h|XT ,...,X−p+1

(x)− FXT+h|XT ,...,XT−p+1
(x)
∣∣∣ p→ 0, (13)

where X∗
T+h = G (XT , . . . , XT−p+1; ϵ̂

∗
T+1, . . . , ϵ̂

∗
T+h; θ̂); this is computed as X∗

T+k = ϕ(X∗
T+k−1, θ̂1) +σ(X∗

T+k−1,

θ̂2)ϵ̂
∗
T+k iteratively for k = 1, . . . , h; {ϵ̂∗i }

T+h
i=T+1are i.i.d. ∼ F̂ϵ; cT is an appropriate sequence converges to infinity

as T converges to infinity; we can take cT = T δ for some small δ < 1/2. FX∗
T+h|XT ,...,X−p+1

(x) is the distribution
of h-step ahead future value in the bootstrap world, i.e., conditional on all observed data.

As we discussed in the Section 1, instead of adopting the fitted (traditional) residuals, we can apply the
predictive residuals to compute QPI. To acquire such predictive residuals which are denoted ϵ̂pt hereafter, we need
to estimate models based on delete-Xt data, i.e., the available data for the scatter plot of Xi vs. {Xi−p, . . . , Xi−1}
excludes the single point at i = t. Evaluate and collect the estimation residual at this point and repeat it for
t = 1, . . . , T , we obtain all predictive residuals {ϵ̂pt }Tt=1. When T tends to infinity, the effects of leaving out one
data pair Xt vs. {Xt−1, . . . , Xt−p} is negligible. Hence, for large T , the predictive residual ϵ̂pt is approximately
the same as the fitted residual ϵ̂t. Therefore, Lemma 2.1 and Theorem 2.3 are still true with predictive residuals.
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Remark. Beyond the prediction based on optimal L1 or L2 loss criterion, our bootstrap prediction proce-
dure can be extended to predict any quantile value of the future distribution of XT+h when the sample size is
large enough. To get such optimal prediction in practice, we can take the desired quantile of M pseudo val-
ues {X(1)

T+h, . . . , X
(M)
T+h} generated by the forward bootstrap prediction method mentioned above. This type of

prediction can serve the needs of predictions under asymmetric loss functions.

3 Pertinent PIs

As shown in Theorem 2.3, it is straightforward to build a QPI for XT+h. Although this type of prediction
interval is asymptotically valid, it can not capture the variability arising from the model estimation. We can
illustrate the necessity of including the model estimation variability by a simple example. Suppose we want to do
a 1-step ahead prediction with data generated by the underlying model: Xt = g(Xt−1)+ϵt; here we assume that
innovations ϵt are i.i.d. and the non-linear function g(·) makes the series {Xt} geometrically ergodic. If we want
to build a PI for XT+1 based on {XT , . . . , X1}. We can rely on the distribution of predictive root X̂T+1−XT+1;
here we assume X̂T+1 is the L2-optimal prediction, i.e., ĝ(XT ) in this context; ĝ() is the estimation of g(). Thus,

X̂T+1 −XT+1 = ĝ(XT )− g(XT )− ϵT+1.

In a large-sample case, ĝ(XT )− g(XT ) could be negligible. The standard QPI treats it as exactly zero and tries
to explain the variability of the root as the variability of the innovation ϵ. However, for the finite sample case,
the variability inherent in ĝ(XT )− g(XT ) needs to be captured in which the bootstrap plays a vital role. Due
to this reason, we propose a new bootstrap procedure to build the so-called PPI in Algorithm 2. Analogously
to the development of QPI with predictive residuals, we can also build PPI with predictive residuals.

Remark 3.1. To build the PPI for Eq. (11) with heteroscedastic error, we need to normalize the variance of
fitted/predictive residuals to 1 since we assume the innovation ϵ1 has variance 1 if σ(·) ̸≡ 1. This additional
manipulation for Eq. (11) with heteroscedastic error simplifies the theoretical proof. Moreover, from a practical
issue, the length of PPI will decrease with this additional step.

3.1 Asymptotic validity of the PPIs

The idea that underlies Algorithm 2 is approximating the distribution of predictive root XT+h − X̂T+h by its
bootstrap version X∗

T+h − X̂∗
T+h. From a theoretical view, as we have clarified, applying fitted residuals or

predictive residuals is asymptotically equivalent. Thus, in what follows, we analyze the asymptotic performance
of a PPI with fitted residuals. However, the PI with predictive residuals invariably has a larger finite-sample
CVR. All in all, we want to compare two predictive roots XT+h − X̂T+h and X∗

T+h − X̂∗
T+h. If we can show

sup
|x|≤cT

∣∣∣P(X∗
T+h − X̂∗

T+h ≤ x|XT , . . . , X−p+1

)
− P

(
XT+h − X̂T+h ≤ x|XT , . . . , XT−p+1

)∣∣∣ p→ 0, (14)

then we can utilize the distribution of X∗
T+h− X̂∗

T+h to consistently estimate the distribution of XT+h− X̂T+h;
as a result, the PPI has asymptotic validity within cT . Eq. (14) can be shown based on Theorem 2.3 with one
additional condition, namely that θ̂∗ = (θ̂∗1 , θ̂

∗
2) is consistent to θ̂ = (θ̂1, θ̂2). Before going into detail about this

property, we first discuss the conditions under which θ̂ is consistent to θ = (θ1, θ2).
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Algorithm 2 h-steps ahead PPI of XT+h for unknown homoscedastic Eq. (11) with fitted residuals

Step 1 Fit the homoscedastic model (11) based on {X−p+1, . . . , XT } to get parameter estimation
θ̂1 which satisfies A9. Furthermore, compute and record ϵ̂t − T−1

∑T
i=1 ϵ̂i for t = 1, . . . , T

to get F̂ϵ.
Step 2 Find the prediction X̂T+h based on the forward bootstrap method.
Step 3 (a) Resample (with replacement) the residuals from F̂ϵ to create pseudo-errors {ϵ̂∗t }Tt=p+1

and {ϵ̂∗t }T+h
t=T+1.

(b) Let (X∗
−p+1, . . . , X

∗
0 )

′ = (X0+I , · · · , Xp+I−1)
′ where I is generated as a discrete random

variable uniformly on the values −p+1, . . . , T − p+1. Then, use the fitted homoscedastic
NLAR model of Step 1 and the generated {ϵ̂∗t }Tt=p+1 in Step 3 (a) to create bootstrap pseudo-
data {X∗

t }Tt=1 in a recursive manner, i.e., compute X∗
k = ϕ(X∗

k−1, θ̂1) + ϵ̂∗1 for k = 1, . . . , T .
(c) Based on the bootstrap data {X∗

t }Tt=−p+1, re-estimate the homoscedastic NLAR model
to get θ̂∗1.
(d) Guided by the idea of forward bootstrap, re-define the last p values of the bootstrap
data to match the original, i.e., re-define X∗

t = Xt for t = T − p+ 1, . . . , T .
(e) With parameter estimation θ̂1, the bootstrap data {X∗

t }Tt=−p+1, and the pseudo-errors
{ϵ̂∗t }T+h

t=T+1 to generate recursively the future bootstrap data X∗
T+1, . . . , X

∗
T+h.

(f) With bootstrap data {X∗
t }Tt=−p+1 and parameter estimation θ̂∗1, utilize the forward

bootstrap method to compute the bootstrap predictor which is denoted by X̂∗
T+h. For

generating innovations, we still use F̂ϵ.
(g) Determine the bootstrap root: X∗

T+h − X̂∗
T+h.

Step 4 Repeat Step 3 K times; the K bootstrap root replicates are collected in the form of an
empirical distribution whose β-quantile is denoted q(β). The (1 − α)100% equal-tailed
prediction interval for XT+h centered at X̂T+h is then estimated by [X̂T+h+q(α/2), X̂T+h+

q(1− α/2)].
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3.2 The consistency of θ̂ to θ

In this paper, we adopt the non-linear LS (NLS) technique to perform parameter estimation; the reason is that
NLS is based entirely on the scatter plot of Xt vs. (Xt−1, . . . , Xt−p) so that predictive residuals can be easily
defined. First, we consider a homoscedastic version of Eq. (11). The heteroscedastic version will be handled
by a two-step estimation approach later. To simplify notation in the proofs, we consider an NLAR model with
order one, and we attempt to minimize a quadratic empirical loss function as given below:

θ̂1 = arg min
ϑ∈Θ1

LT (ϑ) where LT (ϑ) =
1

T

T∑
t=1

(Xt − ϕ(Xt−1, ϑ))
2, (15)

where Θ1 is the domain of possible values of θ1. With a correctly specified model, the true parameter θ1 satisfies
that:

θ1 = arg min
ϑ∈Θ1

L(ϑ) where L(ϑ) = E(Xt − ϕ(Xt−1, ϑ))
2. (16)

The consistency of the non-linear least squares estimator θ̂1 to θ1 can be guaranteed with below additional
assumptions:

A13 Θ1 is bounded, closed and with finite dimension.

A14 θ1 uniquely minimizes L(ϑ) over ϑ ∈ Θ1.

If we can not correctly specify the model, we call θ1 the optimal parameter in the sense of minimizing L(ϑ).
We can still build the consistency relationship between θ̂1 and θ1 if we assume A14. As we have clarified
at the beginning of Section 1, we focus on the case where we can correctly specify the model. The model
misspecification case can be analyzed similarly.

Lemma 3.1. Under assumptions A1-A7 and A10, A13-A14, if {Xt} satisfies a homoscedastic Eq. (11), the
non-linear least squares estimation θ̂1 converges to the true parameter θ1 in probability, i.e., for any ϵ > 0,

P(|θ̂1 − θ1| > ϵ) → 0. (17)

To handle the heteroscedastic Eq. (11), we still estimate θ1 by minimizing the empirical risk Eq. (15). The
corresponding true risk with respect to θ1 is:

E(Xt − ϕ(Xt−1, ϑ))
2 = E(ϕ(Xt−1, θ1)− ϕ(Xt−1, ϑ))

2 + E(σ(Xt−1, θ2)
2), (18)

which implies that the minimizer of risk Eq. (18) is equal to the true θ1. Thus, the minimizer of empirical
risk will still converge to the true parameter in probability. After securing this consistent estimation of θ1, we
proceed to estimate the θ2 by minimizing the below empirical risk:

θ̂2 = arg min
ϑ∈Θ2

KT (ϑ, θ̂1) = arg min
ϑ∈Θ2

∣∣∣∣∣∣ 1T
T∑

t=1

(
Xt − ϕ(Xt−1, θ̂1)

h(Xt−1, ϑ)

)2

− 1

∣∣∣∣∣∣ . (19)

The corresponding true risk should be:

ϑ2 = arg min
ϑ∈Θ2

K(ϑ, θ1) = arg min
ϑ∈Θ2

∣∣∣∣∣E
(
Xt − ϕ(Xt−1, θ1)

h(Xt−1, ϑ)

)2

− 1

∣∣∣∣∣
= arg min

ϑ∈Θ2

∣∣∣∣∣E
(
ϕ(Xt−1, θ1) + h(Xt−1, θ2)ϵt − ϕ(Xt−1, θ1)

h(Xt−1, ϑ)

)2

− 1

∣∣∣∣∣
= arg min

ϑ∈Θ2

∣∣∣∣∣E
(
h(Xt−1, θ2)

h(Xt−1, ϑ)

)2

− 1

∣∣∣∣∣ ,
(20)

which implies ϑ2 = θ2. Under the additional assumptions:
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A15 Θ2 is bounded, closed and with finite dimension.

A16 θ2 uniquely minimizes K(ϑ, θ1) over ϑ ∈ Θ2,

we can derive the lemma below to ensure the consistency of θ̂2 to θ2:

Lemma 3.2. Under assumptions A1-A7 and A10, A13-A16, if {Xt} satisfies a heteroscedastic model (11), the
NLS estimators θ̂1 and θ̂2 converge respectively to the true parameters θ1 and θ2 in probability.

3.3 The consistency of θ̂∗ to θ̂ in the bootstrap world

From the last subsection, we have seen the non-linear least squares can return a satisfied estimation but this is
still not enough for us to derive the asymptotic validity of the PPI. As we discussed in Section 3.1, the necessary
component is the consistency between (θ̂∗1 , θ̂

∗
2) and (θ̂1, θ̂2). We first investigate the relationship between θ̂∗1 and

θ1. Once this relationship is determined, the consistency between θ̂∗1 and θ̂1 is trivial. In the work of Franke
and Neumann (2000), a similar problem is considered for the regression case. In short, this consistency can
be proved by showing that analogous L∗

T (ϑ) converges uniformly to L(ϑ). In our case, L∗
T (ϑ) has the form as

below:

L∗
T (ϑ) =

1

T

T∑
t=1

(X∗
t − ϕ(X∗

t−1, ϑ))
2, (21)

here {X∗
t } is the bootstrap series, which mimics the property of the true series and θ̂∗1 satisfies that:

θ̂∗1 = arg min
ϑ∈Θ1

L∗
T (ϑ) = arg min

ϑ∈Θ1

1

T

T∑
t=1

(X∗
t − ϕ(X∗

t−1, ϑ))
2. (22)

As discussed in Section 3.2, it is necessary that we have the additional condition: the bootstrap series is also
geometrically ergodic. Then, with close enough empirical residual distribution and true innovation distribution,
we may show the uniform convergence of L∗

T (ϑ) and L(ϑ). Then, the consistency of θ̂∗1 to θ1 is easily found.
The first problem we face is that the probability density of the fitted residual ϵ̂ is not continuous and positive

everywhere which means the basic assumption A4 needed to show the ergodicity of the bootstrap series is not
met. In a similar situation, Franke, Kreiss, Mammen, and Neumann (2002) apply the kernel technique to build
a probability density of ϵ̂. Here, we take a convolution approach to make the density function of empirical
residual continuous and positive everywhere, i.e., we define another random variable ϵ̃i which is the sum of
empirical fitted residual ϵ̂i and an independent normal random variable with mean 0 and suitable variance ξ(T ),
i.e., let:

ϵ̃i = ϵ̂i + zi, for i = 1, . . . , T, (23)

where zi ∼ N(0, ξ(T )), where ξ(T ) converges to 0 as T → ∞ with a suitable rate. Then, we create bootstrap
residuals by drawing i.i.d. from F̃ϵ, the CDF of {ϵ̃i}, in order to build a bootstrap series {X̃∗

t } as we did in
Algorithm 2. Subsequently, we re-estimate the parameter of NLAR based on the bootstrap series {X̃∗

t }. Since
the convergence in mean squares implies the convergence in probability, we can easily see that Lemma 2.1 still
stands true for F̃ϵ.

Remark. Here, we take a convolution approach to create residuals that possess a continuous probability density
function. We should notice that this approach is equivalent to the kernel density estimator taken by Franke,
Kreiss, Mammen, and Neumann (2002) and Franke, Kreiss, and Mammen (2002) with a Gaussian kernel.
More specifically, the variance ξ(T ) plays the same role as the bandwidth h in the Gaussian kernel. Thus, if
we take ξ(T ) = O(T−δ′) for some constant δ′ > 0, we can show that the probability density of ϵ̃, f̃ϵ converges
uniformly to fϵ,i.e., ||f̃ϵ−fϵ||∞ = op(1), see the proof of Lemma 4 from Franke, Kreiss, Mammen, and Neumann
(2002) for a reference. In addition, this convolution technique can also be applied to predictive residuals. As we
have discussed in Section 3.1, the predictive residual is equivalent to the fitted residual asymptotically.
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Although we will use F̃ϵ and the corresponding density function f̃ϵ to develop subsequent theorems, in
practice we still apply F̂ϵ since effects stemming from zi are negligible when we sample innovations from the
empirical residual distribution. For simplifying notations, we keep using F̂ϵ and f̂ϵ, though their representation
may change according to the context. Similarly with the deduction of Lemma 3.1, we can get:

P(|θ̂∗1 − θ1| > ϵ) ≤ P(2 sup
ϑ∈Θ1

|L∗
T (ϑ)− L(ϑ)| > C), (24)

for some constant C > 0. Focusing on analyzing supϑ∈Θ1
|L∗

T (ϑ)−L(ϑ)|, we can partition the parameter space
into different balls, i.e., make a ε-covering of Θ1. Let the ε-covering number of Θ be CN = N(ε; Θ1; || · ||) which
means for every ϑ ∈ Θ1, ∃ i ∈ {1, 2, . . . , CN} s.t. ||ϑ − θi|| ≤ ε for ∀ε > 0. Define Ξθ ∈ {θ1, . . . , θCN }, we can
consider:

sup
ϑ∈Θ1

|L∗
T (ϑ)− L(ϑ)| ≤ max

Ξθ∈{ϑ1,...,ϑCN }
|L∗

T (Ξθ)− L(Ξθ)|+ sup
ϑ∈Θ1

|L∗
T (ϑ)− L∗

T (Ξθ)|+ sup
ϑ∈Θ1

|L(ϑ)− L(Ξθ)|. (25)

Consider the second term of the r.h.s. of the above inequality. From Lipschitz continuous assumption of ϕ(·, ·)
with respect to ϑ, we can get:

sup
ϑ∈Θ1

|L∗
T (ϑ)− L∗

T (Ξθ)| ≤ sup
ϑ∈Θ1

L||ϑ− Ξθ|| ≤ L · ε → 0. (26)

Similarly, we can find the supϑ∈Θ |L(ϑ)−L(Ξθ)| → 0. For the first term of the r.h.s of Eq. (25), if we can show the
bootstrap series is also ergodic when the parameter is fixed, then we actually have L∗

T (Ξϑ)
p→ E∗[X∗

1−ϕ(X∗
0 ,Ξϑ)],

such a similar result is also implied by Theorem 5 of Franke, Kreiss, Mammen, and Neumann (2002), here E∗(·)
stands for the conditional expectation in the bootstrap world. Therefore, for getting the uniform convergence
of L∗

T (ϑ) to L(ϑ) in probability, it is enough to show:

E∗[X∗
1 − ϕ(X∗

0 ,Ξθ)]
2 p→ E[X1 − ϕ(X0,Ξθ)]

2, for each Ξθ. (27)

For notational simplicity, we consider an NLAR(1) model; then, the l.h.s. of Eq. (27) equals:∫
R2

(x1 − ϕ(x0,Ξθ))
2f̂ϵ(x1 − ϕ(x0, θ̂1))π

∗(x0)dx1dx0, (28)

where π∗(·) stands for the marginal stationary density function of the bootstrap series. As we can see, the
uniform convergence of Eq. (25) in probability depends on the ergodic property of the bootstrap series and the
closeness of π∗(·) and π(·) which is the true stationary density function of the real series. In other words, the
ergodic property of the bootstrap series is not enough to get our desired result. We also require the stationary
distribution of the bootstrap series and the real series should be close enough to show Eq. (27). Here, we develop
a theorem to illustrate the required conditions.

Theorem 3.1. Suppose that the data generating process obeys Eq. (11) and the bootstrap time series {X∗
t }Tt=−p+1

are generated by our forward bootstrap methods. Under A1-A7, A9-A12, we have:

E∗[X∗
1 − ϕ(X∗

0 ,Ξθ)]
2 p→ E[X1 − ϕ(X0,Ξθ)]

2. (29)

Then, the following Corollary 3.1 is trivial:

Corollary 3.1. Under assumptions A1-A7, A9-A12, θ̂∗ is consistent to θ̂ with both fitted and predictive resid-
uals, which substantiates Eq. (14). Thus, the conditional distribution of XT+h − X̂T+h can be asymptotically
approximated by the conditional distribution of X∗

T+h − X̂∗
T+h which guarantees the validity of PPI.
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3.4 The estimation inference of θ̂ and θ̂∗

With a more complicated prediction procedure in Algorithm 2, we expect to get a stronger property, i.e.,
pertinence. The crucial part behind the pertinence is that we can approximate the distribution of θ̂ by the
distribution of θ̂∗. In other words, the estimation variability can be captured by the bootstrap-based PI. To
derive the estimation inference, we need stronger assumptions than A10 on the mean and variance function.
We assume:

A17 For all x in the support X of Xt, ϕ(x, ·) and σ(x, ·) are twice differentiable w.r.t. parameters in some
neighborhood of true parameters.

A18 If we write LT (ϑ) as 1
T

∑T
t=1 qt(ϑ), we need E∇2 q1(θ1) is non-singular; If we write KT (ϑ, θ1) as

1
T

∑T
t=1 qt(ϑ, θ1), we need E∇2 q1(θ2, θ1) is non-singular.

A19 The first order condition of minimizing the empirical risk function satisfies that ∇LT (θ̂1) = op(T−1/2)

and ∇KT (θ̂2, θ̂1) = op(T−1/2). Similarly, we assume we can achieve such accuracy for optimization in
the bootstrap world.

A19 implies that the first-order conditions for minimizing criterion functions hold approximately since it may
be hard to find exactly θ̂1 or θ̂2. Then, we first develop the estimation inference of θ̂1 and θ̂2 in the Theorem 3.2.

Theorem 3.2. Under A1-A7, A13-A19, with consistent parameter estimations θ̂1 and θ̂2, we have:
√
T (θ̂1 − θ1)

d→ N(0, B−1
1 Ω1B

−1
1 ), (30)

where Ω1 = 4 ·E(σ(X0, θ2)R1σ(X0, θ2)); B1 = 2 ·E
(
∇ϕ(X0, θ1)(∇ϕ(X0, θ1))

⊤); R1 = ∇ϕ(X0, θ1) ∇ϕ(X0, θ1)
⊤;

∇ is the gradient operator w.r.t. θ1. Similarly, we can analyze the distribution of parameter estimation θ̂2:
√
T (θ̂2 − θ2)

d→ N(0, B−1
2 Ω2B

−1
2 ), (31)

where Ω2 = 4 · E(B3R2B
⊤
3 ); B3 = E(∇g(X1, X0, θ2, θ1)); R2 = (g(X1, X0, θ2, θ1) − 1)2; B2 = 2 · (E(∇g(X1,

X0, θ2, θ1)) · (E(∇g(X1, X0, θ2, θ1))
⊤; g(X1, X0, θ2, θ1) =

(
X1−ϕ(X0,θ1)

σ(X0,θ2)

)2
; here ∇ is the gradient operator w.r.t.

θ2.

Remark. From here, we can see the distribution of θ̂1 depends on the time series structure. If we do not assume
that we can specify the correct model format, the covariance matrix of the parameter’s asymptotic distribution
will depend on the whole structure of the time series. This is the reason why we need the forward bootstrap to
generate time series and do estimation in the bootstrap world, otherwise, we can not approximate the covariance
term well.

In the bootstrap world, we can perform a similar parameter estimation procedure as we did in Sec-
tion 3.3. As we have seen in the proof of Theorem 3.1, for (X−p+1, . . . , XT ) ∈ ΩT , where ΩT ⊆ RT+p and
P((X−p+1, . . . , XT ) /∈ ΩT ) = o(1), under the consistency of parameter estimation in the real world, the boot-
strap series is also ergodic in the sense of β-mixing. Thus, we can have below consistency results in the bootstrap
world:

∇2L∗
T (θ̃

∗
1) =

1

T
∇2

T∑
t=1

(
X∗

t − ϕ(X∗
t−1, θ̃

∗
1)
)2 p→ 2 · E∗

(
∇ϕ(X∗

0 , θ̂1)(∇ϕ(X∗
0 , θ̂1))

⊤
)
= B∗

1 ;

∇2K∗
T (θ̃

∗
2 , θ̂

∗
1) = 2 ·

(
1

T

T∑
t=1

∇g∗(X∗
t , X

∗
t−1, θ̃

∗
2 , θ̂

∗
1)

)
·

(
1

T

T∑
t=1

∇g∗(X∗
t , X

∗
t−1, θ̃

∗
2 , θ̂

∗
1)

)⊤

+ 2 ·

(
1

T

T∑
t=1

g∗(X∗
t , X

∗
t−1, θ̃

∗
2 , θ̂

∗
1)− 1

)
·

(
1

T

T∑
t=1

∇2g∗(X∗
t , X

∗
t−1, θ̃

∗
2 , θ̂

∗
1)

)
p→ 2 · E∗

(
∇g∗(X∗

1 , X
∗
0 , θ̂2, θ̂1)

)
E∗
(
∇g∗(X∗

1 , X
∗
0 , θ̂2, θ̂1)

)⊤
= B∗

2 ,

(32)
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where θ̃∗1 is between θ̂∗1 and θ̂1; θ̃∗2 is between θ̂∗2 and θ̂2; hence θ̃∗1 and θ̃∗2 also converge to θ1 and θ2in probability,
respectively. It is easily to find B∗

1 → B1 and B∗
2 → B2 for (X−p+1, . . . , XT ) ∈ ΩT . To simplify the result about

∇2K∗
T (θ̃

∗
2 , θ̂

∗
1), we need the variance of ϵ∗1 to be one to remove the second term. This is guaranteed since we

normalize the variance of the residuals to 1 when we perform the bootstrap prediction algorithms for models
with heteroscedastic errors; see Remark 3.1. Another advantage of this manipulation comes from analyzing
∇K∗

T (θ̂2, θ̂1) = 2 ·
(

1
T

∑T
t=1 g

∗(X∗
t , X

∗
t−1, θ̂2, θ̂1)− 1

)
·
(

1
T

∑T
t=1 ∇g∗(X∗

t , X
∗
t−1, θ̂2, θ̂1)

)
. With this additional

manipulation, E∗(g∗(X∗
t , X

∗
t−1, θ̂2, θ̂1)− 1) is 0, which implies that the asymptotic distribution of ∇K∗

T (θ̂2, θ̂
∗
1)

has mean 0. By the CLT for a triangular array of strongly mixing series given in Politis, Romano, and Wolf
(1997), we can further show:

√
T∇L∗

T (θ̂1)
d→ N(0,Ω1);

√
T∇K∗

T (θ̂2, θ̂
∗
1)

d→ N(0,Ω2).
(33)

The required assumptions can be checked in the same way shown in Theorem 5 of Franke, Kreiss, Mammen,
and Neumann (2002). All in all, we can develop estimation inference for parameter estimation in the bootstrap
world, i.e., Corollary 3.2 as below:

Corollary 3.2. If we restrict on observed data {X−p+1, . . . , XT } ∈ ΩT , where P((X−p+1, . . . , XT ) /∈ ΩT ) = o(1)

as T → ∞, under assumptions of Theorem 3.2, we can further build the estimation inference of parameter
estimations in the bootstrap world, i.e., we have:

√
T (θ̂∗1 − θ̂1)

d→ N(0, B−1
1 Ω1B

−1
1 );

√
T (θ̂∗2 − θ̂2)

d→ N(0, B−1
2 Ω2B

−1
2 ).

(34)

Theorem 3.2 and Corollary 3.2 together guarantee the pertinence of PPI returned by Algorithm 2 with high
probability. The notable advantage of this type of PI will be illustrated in Sections 4 and 5.

4 Simulations

In this section, we deploy simulations to check the performance of our bootstrap point predictions and the
performance of various PIs in R platform for a finite sample size. We first consider a simple case: NLAR model
with order one and homoscedastic errors. We present the model below:

Xt = a+ log(b+ |Xt−1|) + ϵt, b > 0, (35)

where ϵt satisfies A2. Assuming that we have observed series {X1, . . . , XT }, we want to predict the value of
XT+h. As pointed out before, the exactly L2 optimal predictor is the conditional mean of XT+h:

E(Xt+h|X1, . . . , XT ) =

∫
· · ·
∫

G (XT , ϵT+1, . . . , ϵT+h)dFϵT+1
· · · dFϵT+h

, (36)

where G (XT , ϵT+1, . . . , ϵT+h) represents the analytic formula of XT+h which can be obtained by computing
XT+k = a + log(b + |XT+k−1|) + ϵT+k for k = 1, . . . , h iteratively. When we know the NLAR model and
the innovation distribution, Eq. (36) can be computed by multiple-integration directly. However, to avoid the
computational difficulty, we take the simulation repeating number M = 1000 to get a satisfying approximation.
According to the forward bootstrap prediction method, we also do 1000 times bootstrap to get the prediction
when the model and innovation are unknown. Starting from a simple example, we consider a = 0.2, b = 0.5

and {ϵi} ∼ N(0, 1). For the prediction horizon, we consider h = 1, 2, . . . , 5. To generate the data of Eq. (35),
we take X0 ∼ Uniform(−1, 1), then generate a series with size B + T ; B is a large enough burn-in number to
remove the effects of the initial distribution of X0.
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To see the crucial difference between the prediction of LAR and NLAR models, we apply two naive prediction
methods which predict XT+h of Eq. (35) by computing XT+k = a+ log(b+ |XT+k−1|) or XT+k = â+ log(̂b+

|XT+k−1|) repeatedly for k = 1, . . . , h; â and b̂ are estimators of a and b, respectively. In total, we compare four
methods to make predictions. We call them (1) Simulation, with a known model and innovation; (2) Bootstrap,
with an unknown model and innovation; (3) True Naive Prediction—naive prediction with the known model;
(4) Estimated Naive Prediction—naive prediction with the estimated model. The simulation (1) method is
“oracle” since we assume that model and innovation information are known to us. We set the burn-in number
B = 1000 and T = 400. To get a comprehensive comparison, we repeat the above experiment N = 5000 times
and compute the MSPE of various predictions based on the below formula.

MSPE of the h-th ahead prediction =
1

N

N∑
n=1

(Xn,h − Pn,h)
2, for h = 1, . . . , 5, (37)

where Pn,h represents h-th step ahead predictions implied by four approaches and Xn,h stands for the true
future value in the n-th replication. All MSPE values are presented in Table 1.

Table 1: The MSPE of all prediction methods with N(0, 1) innovation under Model Eq. (35)

Prediction Horizon 1 2 3 4 5

L2-Simulation 0.9595 1.2357 1.2101 1.1905 1.2153
L1-Simulation 0.9594 1.2360 1.2107 1.1901 1.2156
L2-Bootstrap 0.9639 1.2390 1.2144 1.1958 1.2181
L1-Bootstrap 0.9640 1.2406 1.2158 1.1960 1.2193
True Naive 0.9596 1.3748 1.4894 1.5581 1.6309
Estimated naive 0.9641 1.3826 1.4910 1.5518 1.6084

We can find that the MSPE of simulation- and bootstrap-based L1 or L2 optimal predictions are very
close, respectively. Since the bootstrap optimal prediction is obtained with an estimated model and innovation
distribution, it is not surprising that the MSPE is slightly larger than the simulation-based (oracle) optimal
prediction, no matter if L2 or L1 is the loss criterion. In our expectation, the MSPE of simulation- and
bootstrap-based prediction are all smaller than the MSPE of two naive predictions. The importance of including
the innovation effect in NLAR prediction is highlighted. Rather than applying the standard normal innovation
distribution, we also researched the MSPE of different methods with a skewed innovation distribution, e.g.,
ϵt ∼ χ2(3) − 3, the relative performance of different prediction methods is consistent with results implied by
Table 1.

Beyond analyzing the performance of point prediction, we are also interested in measuring prediction accu-
racy by building PIs. As discussed before, we can build two types of bootstrap-based prediction intervals: (1)
Quantile PI; (2) Pertinent PI. The advantage of pertinent PI is that it can be centered at the optimal L2 or L1

predictors. Moreover, it includes the estimation error of parameters into consideration, which means a superior
empirical CVR, especially in short data size situations. We take K = 1000 in Algorithm 2 to derive pertinent
PI. We repeat experiment N = 5000 times and set significance level α = 0.05. Then, we compute empirical
CVR of bootstrap-based QPI and PPI for h = 1, . . . , 5 step ahead predictions with the below formula:

CVR of the h-th ahead prediction =
1

N

N∑
n=1

1Xn,h∈[Ln,h,Un,h], for h = 1, . . . , 5, (38)

where [Ln,h, Un,h] and Xn,h represent h-th step ahead prediction intervals and the true future value in the n-th
replication, respectively. We denote all considered PIs by (1) QPI-f, QPI with fitted residuals; (2) QPI-p, QPI
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with predictive residuals; (3) L2-PPI-f, PPI centered at L2 optimal predictor with fitted residuals; (4) L2-PPI-
p, PPI centered at L2 optimal predictor with predictive residuals; (5) L1-PPI-f, PPI centered at L1 optimal
predictor with fitted residuals; (6) L1-PPI-p, PPI centered at L1 optimal predictor with predictive residuals;
(7) SPI, which is QPI based on simulations. In addition, since building a valid PI is more challenging work, we
take seven different models to check the feasibility of our methods:

• Model 1: Xt = (0.1 ·Xt−1)I(Xt−1 ≤ 0) + (0.8 ·Xt−1)I(Xt−1 > 0) + ϵt.

• Model 2: Xt = (0.5 ·Xt−1 + 0.2 ·Xt−2 + 0.1 ·Xt−3)I(Xt−1 ≤ 0) + (0.8Xt−1)I(Xt−1 > 0) + ϵt.

• Model 3: Xt = (0.1 ·Xt−1 + 0.5 · e−X2
t−1ϵt)I(Xt−1 ≤ 0) + (0.8 ·Xt−1 + 0.5 · e−X2

t−1ϵt)I(Xt−1 > 0).

• Model 4: Xt = 0.2 + log(0.5 + |Xt−1|) + ϵt.

• Model 5: Xt = 2 · log(X2
t−1) + ϵt.

• Model 6: Xt = log(10 + 5 · e0.9·Xt−1) + ϵt.

• Model 7: Xt = log(4 · e0.9·Xt−2 + 5 · e0.9·Xt−1 + 6 · e0.9·Xt−3) + ϵt,

where ϵt ∼ N(0, 1) and I(Xt−1 ≤ 0) is the indicator function which equals to 0 when Xt−1 ≤ 0 and 1 otherwise.
Throughout the simulation studies, we pretend that all coefficients except threshold values of these 7 models
are unknown to build PIs based on bootstrap methods. Besides the analyses of CVR, we are also concerned
about the average length of PIs of different methods. In practice, a wide PI is less useful even though it has
great coverage probability. We define the average length (LEN) of PIs as below:

LEN of the h-th ahead PI =
1

N

N∑
n=1

(Un,h − Ln,h), for h = 1, . . . , 5, (39)

where Un,h and Ln,h are higher and lower bounds of the h-th step ahead PI in the n-th replication, respectively.
Accordingly, we present LEN of different PIs along with CVR in Tables 2 to 8.

Remark. We should clarify that the CVR computed by Eq. (38) is the unconditional coverage rate of XT+h

since it is an average of the conditional coverage of XT+h for all replications. Also, when the sample size is
small, we may get parameter estimations that make the time series close to being unstationary, especially for
estimating different regions of a threshold model where the sample size further decreases. This will destroy our
prediction process when multi-step ahead predictions are required. Thus, we redo the simulation once we find
such abnormal larger or smaller predictions.

From these simulations, the first thing we can notice is that all CVR for SPI is great and close to the
nominal coverage level even for short data, which implies the simulation-based approach works well once we
know the true model and innovation distribution. For T = 400, we can find all PPIs work well and are even
competitive compared to the SPI. On the other hand, the QPI with fitted residuals is the worst one, especially
for complicated Models 6 and 7. By applying predictive residuals, the CVR gets improved for QPI. For T = 100,
no matter with fitted or predictive residuals, PPIs dominate QPIs. For T = 50, the gap between QPI and PPI
also gets amplified. For the LEN of different PIs, we can find that the LENs of SPIs are barely changed for a
specific model with various sample sizes. For PPI, although its LEN tends to be slightly larger than the LEN
of SPI and QPI, it is the best bootstrap-type PI according to the CVR. Based on these simulation results, we
summarize some important conclusions below:

• If we know the parameters of the model and innovation distribution, SPI can work well and give accurate
CVR even for short data, but it is usually unrealistic in practice.

• If we do not have model information and the data is short, PPI with predictive residuals is the best
method, which can give competitive performance compared to SPI. On the other hand, the QPI can not
cover future values well and its CVR is severely lower than the nominal level.
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• If we do not have model information and the data in hand is large enough, both QPI and PPI work well.

• Since in practice we can not judge whether the data in hand is large enough for the problem at hand,
using the PPI (with predictive residuals) is recommendable.

Remark. To perform bootstrap-based prediction, we ran simulations in a parallel fashion using 30 Xeon(R)
E5-2630 CPUs. Besides, we should notice that the constant parameter inside the log function of Model 6 is
the hardest one to estimate, since the low change rate of the partial derivative. This may be the reason for the
relatively poor performance of bootstrap-based prediction methods on Model 6.

Table 2: The CVR and LEN of PIs for Model 1

Model 1: Xt = (0.1 ·Xt−1)I(Xt−1 ≤ 0) + (0.8 ·Xt−1)I(Xt−1 > 0) + ϵt

CVR for each step LEN for each step
T = 400 1 2 3 4 5 1 2 3 4 5

QPI-f 0.9456 0.9472 0.9478 0.9496 0.9484 3.89 4.60 4.87 5.01 5.07
QPI-p 0.9470 0.9468 0.9478 0.9502 0.9500 3.91 4.62 4.90 5.03 5.09
L2-PPI-f 0.9474 0.9454 0.9486 0.9500 0.9514 3.90 4.61 4.89 5.03 5.09
L2-PPI-p 0.9474 0.9480 0.9480 0.9510 0.9526 3.92 4.63 4.92 5.05 5.12
L1-PPI-f 0.9468 0.9456 0.9494 0.9494 0.9520 3.90 4.61 4.89 5.03 5.09
L1-PPI-p 0.9464 0.9468 0.9484 0.9512 0.9530 3.92 4.63 4.92 5.05 5.12
SPI 0.9484 0.9474 0.9500 0.9502 0.9546 3.90 4.62 4.91 5.04 5.10

T = 100

QPI-f 0.9388 0.9408 0.9362 0.9328 0.9330 3.86 4.52 4.78 4.91 4.97
QPI-p 0.9438 0.9446 0.9394 0.9366 0.9352 3.94 4.61 4.88 5.00 5.07
L2-PPI-f 0.9416 0.9424 0.9382 0.9350 0.9358 3.91 4.58 4.85 4.98 5.05
L2-PPI-p 0.9478 0.9478 0.9442 0.9396 0.9402 3.99 4.67 4.94 5.08 5.15
L1-PPI-f 0.9428 0.9430 0.9376 0.9346 0.9358 3.91 4.58 4.85 4.97 5.04
L1-PPI-p 0.9476 0.9482 0.9442 0.9402 0.9404 3.99 4.67 4.94 5.07 5.14
SPI 0.9502 0.9482 0.9464 0.9468 0.9460 3.90 4.61 4.89 5.03 5.09

T = 50

QPI-f 0.9168 0.9248 0.9204 0.9106 0.9218 3.74 4.44 4.69 4.81 4.87
QPI-p 0.9296 0.9360 0.9334 0.9238 0.9324 3.91 4.63 4.90 5.02 5.09
L2-PPI-f 0.9306 0.9318 0.9268 0.9176 0.9306 3.91 4.57 4.83 4.96 5.04
L2-PPI-p 0.9402 0.9438 0.9392 0.9292 0.9390 4.07 4.76 5.04 5.18 5.26
L1-PPI-f 0.9302 0.9314 0.9264 0.9170 0.9300 3.91 4.56 4.82 4.95 5.02
L1-PPI-p 0.9390 0.9438 0.9366 0.9290 0.9364 4.08 4.75 5.03 5.16 5.24
SPI 0.9486 0.9492 0.9508 0.9452 0.9464 3.90 4.61 4.90 5.03 5.09

16



Table 3: The CVR and LEN of PIs for Model 2

Model 2: Xt = (0.5 ·Xt−1 + 0.2 ·Xt−2 + 0.1 ·Xt−3)I(Xt−1 ≤ 0) + (0.8 ·Xt−1)I(Xt−1 > 0) + ϵt

CVR for each step LEN for each step
T = 400 1 2 3 4 5 1 2 3 4 5

QPI-f 0.9420 0.9506 0.9468 0.9444 0.9372 3.88 4.68 5.11 5.40 5.58
QPI-p 0.9462 0.9512 0.9502 0.9474 0.9428 3.92 4.72 5.16 5.45 5.64
L2-PPI-f 0.9446 0.9510 0.9486 0.9470 0.9408 3.90 4.71 5.15 5.44 5.63
L2-PPI-p 0.9466 0.9542 0.9516 0.9494 0.9434 3.94 4.75 5.20 5.49 5.69
L1-PPI-f 0.9448 0.9518 0.9478 0.9468 0.9402 3.90 4.71 5.15 5.44 5.62
L1-PPI-p 0.9470 0.9544 0.9500 0.9486 0.9436 3.94 4.75 5.20 5.49 5.68
SPI 0.9446 0.9534 0.9508 0.9510 0.9454 3.90 4.71 5.16 5.46 5.65

T = 100

QPI-f 0.9270 0.9304 0.9294 0.9272 0.9250 3.81 4.57 4.98 5.23 5.40
QPI-p 0.9370 0.9412 0.9368 0.9372 0.9372 3.98 4.76 5.19 5.46 5.63
L2-PPI-f 0.9358 0.9352 0.9338 0.9314 0.9298 3.95 4.71 5.13 5.40 5.59
L2-PPI-p 0.9454 0.9454 0.9444 0.9430 0.9418 4.10 4.90 5.34 5.63 5.83
L1-PPI-f 0.9364 0.9360 0.9336 0.9310 0.9304 3.95 4.71 5.13 5.39 5.58
L1-PPI-p 0.9450 0.9456 0.9432 0.9422 0.9412 4.11 4.90 5.33 5.62 5.81
SPI 0.9446 0.9472 0.9498 0.9474 0.9478 3.90 4.71 5.16 5.46 5.65

T = 50

QPI-f 0.8980 0.9054 0.9018 0.8950 0.8926 3.66 4.47 4.87 5.14 5.38
QPI-p 0.9260 0.9314 0.9272 0.9218 0.9212 4.05 4.97 5.42 5.74 5.99
L2-PPI-f 0.9340 0.9268 0.9214 0.9164 0.9152 4.22 5.10 5.86 6.89 8.97
L2-PPI-p 0.9522 0.9478 0.9404 0.9400 0.9376 4.60 5.57 6.36 7.33 9.03
L1-PPI-f 0.9338 0.9268 0.9194 0.9144 0.9130 4.23 5.09 5.82 6.79 8.71
L1-PPI-p 0.9522 0.9482 0.9384 0.9378 0.9356 4.61 5.55 6.30 7.20 8.71
SPI 0.9494 0.9448 0.9464 0.9458 0.9462 3.90 4.71 5.16 5.46 5.65
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Table 4: The CVR and LEN of PIs for Model 3

Model 3: Xt = (0.1 ·Xt−1 + 0.5 · e−X2
t−1 · ϵt)I(Xt−1 ≤ 0) + (0.8 ·Xt−1 + 0.5 · e−X2

t−1 · ϵt)I(Xt−1 > 0)

CVR for each step LEN for each step
T = 400 1 2 3 4 5 1 2 3 4 5

QPI-f 0.9478 0.9442 0.9526 0.9444 0.9418 1.47 1.74 1.82 1.84 1.85
QPI-p 0.9474 0.9486 0.9504 0.9444 0.9432 1.47 1.74 1.82 1.84 1.85
L2-PPI-f 0.9520 0.9488 0.9542 0.9436 0.9434 1.59 2.22 2.24 2.30 2.29
L2-PPI-p 0.9510 0.9486 0.9522 0.9454 0.9446 1.64 2.37 2.37 2.44 2.42
L1-PPI-f 0.9514 0.9480 0.9540 0.9448 0.9440 1.63 1.88 2.10 2.17 2.18
L1-PPI-p 0.9480 0.9514 0.9530 0.9474 0.9448 1.68 1.92 2.19 2.27 2.28
SPI 0.9500 0.9500 0.9516 0.9444 0.9442 1.47 1.74 1.82 1.84 1.85

T = 100

QPI-f 0.9344 0.9388 0.9420 0.9390 0.9372 1.47 1.73 1.81 1.84 1.85
QPI-p 0.9318 0.9348 0.9404 0.9392 0.9378 1.47 1.73 1.82 1.84 1.86
L2-PPI-f 0.9406 0.9418 0.9452 0.9418 0.9434 1.55 2.08 2.11 2.13 2.11
L2-PPI-p 0.9424 0.9422 0.9452 0.9410 0.9452 1.64 2.40 2.38 2.40 2.36
L1-PPI-f 0.9400 0.9426 0.9464 0.9430 0.9440 1.60 1.91 2.01 2.02 2.03
L1-PPI-p 0.9398 0.9440 0.9466 0.9412 0.9454 1.72 2.04 2.16 2.17 2.18
SPI 0.9482 0.9474 0.9506 0.9518 0.9456 1.47 1.74 1.82 1.84 1.85

T = 50

QPI-f 0.9060 0.9268 0.9266 0.9222 0.9302 1.43 1.71 1.80 1.83 1.84
QPI-p 0.9030 0.9286 0.9262 0.9206 0.9312 1.44 1.73 1.82 1.85 1.87
L2-PPI-f 0.9300 0.9394 0.9350 0.9338 0.9408 1.55 3.37 3.34 3.23 3.11
L2-PPI-p 0.9302 0.9414 0.9358 0.9372 0.9398 1.64 3.85 3.74 3.60 3.44
L1-PPI-f 0.9302 0.9410 0.9358 0.9356 0.9412 1.61 2.39 2.58 2.54 2.50
L1-PPI-p 0.9308 0.9422 0.9364 0.9384 0.9412 1.79 2.79 2.81 2.74 2.68
SPI 0.9486 0.9520 0.9486 0.9444 0.9518 1.47 1.74 1.81 1.84 1.85
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Table 5: The CVR and LEN of PIs for Model 4

Model 4: Xt = 0.2 + log(0.5 + |Xt−1|) + ϵt

CVR for each step LEN for each step
T = 400 1 2 3 4 5 1 2 3 4 5

QPI-f 0.9498 0.9446 0.9482 0.9444 0.9444 3.89 4.30 4.33 4.33 4.33
QPI-p 0.9486 0.9462 0.9512 0.9450 0.9464 3.91 4.33 4.35 4.35 4.35
L2-PPI-f 0.9492 0.9454 0.9480 0.9440 0.9466 3.90 4.32 4.34 4.34 4.34
L2-PPI-p 0.9508 0.9442 0.9504 0.9458 0.9466 3.92 4.33 4.35 4.36 4.36
L1-PPI-f 0.9496 0.9460 0.9486 0.9454 0.9468 3.90 4.32 4.34 4.34 4.34
L1-PPI-p 0.9510 0.9452 0.9502 0.9462 0.9472 3.93 4.34 4.35 4.36 4.36
SPI 0.9502 0.9456 0.9492 0.9460 0.9504 3.90 4.32 4.34 4.34 4.34

T = 100

QPI-f 0.9350 0.9440 0.9358 0.9412 0.9348 3.85 4.27 4.29 4.29 4.29
QPI-p 0.9412 0.9482 0.9404 0.9456 0.9412 3.93 4.34 4.37 4.37 4.37
L2-PPI-f 0.9376 0.9442 0.9370 0.9438 0.9362 3.90 4.30 4.32 4.32 4.32
L2-PPI-p 0.9412 0.9504 0.9406 0.9478 0.9426 3.98 4.38 4.39 4.40 4.40
L1-PPI-f 0.9386 0.9446 0.9378 0.9448 0.9364 3.90 4.30 4.32 4.32 4.32
L1-PPI-p 0.9412 0.9502 0.9404 0.9470 0.9418 3.98 4.38 4.40 4.40 4.41
SPI 0.9480 0.9502 0.9426 0.9504 0.9466 3.90 4.32 4.34 4.34 4.34

T = 50

QPI-f 0.9280 0.9288 0.9328 0.9326 0.9312 3.75 4.24 4.27 4.26 4.27
QPI-p 0.9386 0.9396 0.9420 0.9422 0.9428 3.92 4.40 4.43 4.43 4.43
L2-PPI-f 0.9404 0.9316 0.9372 0.9372 0.9352 3.89 4.30 4.32 4.32 4.33
L2-PPI-p 0.9496 0.9398 0.9452 0.9448 0.9438 4.06 4.46 4.48 4.49 4.49
L1-PPI-f 0.9410 0.9308 0.9376 0.9384 0.9350 3.90 4.30 4.33 4.33 4.33
L1-PPI-p 0.9504 0.9398 0.9452 0.9458 0.9438 4.06 4.47 4.49 4.50 4.49
SPI 0.9530 0.9462 0.9456 0.9444 0.9428 3.90 4.32 4.34 4.34 4.34
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Table 6: The CVR and LEN of PIs for Model 5

Model 5: Xt = 2 · log(X2
t−1) + ϵt

CVR for each step LEN for each step
T = 400 1 2 3 4 5 1 2 3 4 5

QPI-f 0.9432 0.9502 0.9476 0.9478 0.9510 3.90 4.32 4.42 4.44 4.45
QPI-p 0.9440 0.9524 0.9492 0.9480 0.9484 3.91 4.33 4.43 4.46 4.46
L2-PPI-f 0.9468 0.9502 0.9516 0.9494 0.9518 3.90 4.34 4.43 4.46 4.47
L2-PPI-p 0.9448 0.9536 0.9500 0.9478 0.9498 3.92 4.35 4.45 4.47 4.48
L1-PPI-f 0.9448 0.9510 0.9506 0.9496 0.9504 3.91 4.34 4.44 4.46 4.47
L1-PPI-p 0.9440 0.9532 0.9494 0.9480 0.9498 3.92 4.35 4.45 4.47 4.48
SPI 0.9462 0.9538 0.9510 0.9480 0.9472 3.90 4.33 4.42 4.45 4.45

T = 100

QPI-f 0.9484 0.9406 0.9392 0.9452 0.9418 3.87 4.29 4.39 4.41 4.42
QPI-p 0.9498 0.9450 0.9406 0.9480 0.9450 3.92 4.34 4.44 4.46 4.46
L2-PPI-f 0.9512 0.9436 0.9418 0.9488 0.9456 3.90 4.33 4.44 4.47 4.48
L2-PPI-p 0.9526 0.9468 0.9436 0.9480 0.9470 3.94 4.38 4.48 4.52 4.53
L1-PPI-f 0.9524 0.9440 0.9420 0.9476 0.9454 3.90 4.33 4.44 4.47 4.48
L1-PPI-p 0.9530 0.9470 0.9438 0.9488 0.9476 3.94 4.38 4.48 4.52 4.53
SPI 0.9562 0.9514 0.9470 0.9512 0.9496 3.90 4.33 4.42 4.45 4.45

T = 50

QPI-f 0.9246 0.9314 0.9326 0.9342 0.9376 3.79 4.27 4.36 4.38 4.39
QPI-p 0.9300 0.9390 0.9390 0.9394 0.9432 3.88 4.36 4.45 4.48 4.48
L2-PPI-f 0.9336 0.9366 0.9398 0.9404 0.9452 3.89 4.34 4.46 4.50 4.51
L2-PPI-p 0.9362 0.9418 0.9426 0.9444 0.9492 3.96 4.43 4.55 4.59 4.60
L1-PPI-f 0.9332 0.9374 0.9392 0.9398 0.9444 3.89 4.35 4.46 4.50 4.51
L1-PPI-p 0.9364 0.9426 0.9432 0.9436 0.9480 3.97 4.44 4.55 4.59 4.60
SPI 0.9508 0.9498 0.9480 0.9454 0.9516 3.90 4.33 4.43 4.45 4.45
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Table 7: The CVR and LEN of PIs for Model 6

Model 6: Xt = log(10 + 5 · e0.9·Xt−1) + ϵt

CVR for each step LEN for each step
T = 400 1 2 3 4 5 1 2 3 4 5

QPI-f 0.9506 0.9452 0.9440 0.9420 0.9388 3.88 5.18 6.01 6.60 7.03
QPI-p 0.9528 0.9472 0.9454 0.9414 0.9378 3.90 5.22 6.05 6.64 7.07
L2-PPI-f 0.9532 0.9488 0.9476 0.9434 0.9418 3.90 5.22 6.07 6.67 7.11
L2-PPI-p 0.9506 0.9500 0.9478 0.9456 0.9412 3.92 5.26 6.12 6.71 7.16
L1-PPI-f 0.9536 0.9488 0.9470 0.9442 0.9424 3.90 5.22 6.07 6.67 7.12
L1-PPI-p 0.9514 0.9510 0.9482 0.9456 0.9424 3.93 5.26 6.12 6.72 7.17
SPI 0.9532 0.9508 0.9508 0.9490 0.9498 3.90 5.25 6.13 6.76 7.23

T = 100

QPI-f 0.9350 0.9244 0.9216 0.9108 0.9038 3.83 5.02 5.77 6.28 6.67
QPI-p 0.9404 0.9302 0.9298 0.9176 0.9116 3.94 5.17 5.93 6.46 6.86
L2-PPI-f 0.9422 0.9332 0.9330 0.9224 0.9136 3.94 5.23 6.04 6.62 7.06
L2-PPI-p 0.9498 0.9388 0.9392 0.9324 0.9218 4.05 5.37 6.21 6.81 7.25
L1-PPI-f 0.9424 0.9340 0.9340 0.9224 0.9146 3.95 5.23 6.04 6.63 7.07
L1-PPI-p 0.9498 0.9400 0.9384 0.9318 0.9214 4.05 5.38 6.21 6.81 7.26
SPI 0.9498 0.9496 0.9504 0.9458 0.9494 3.90 5.25 6.13 6.76 7.23

T = 50

QPI-f 0.9056 0.8930 0.8796 0.8640 0.8526 3.72 4.85 5.50 5.97 6.34
QPI-p 0.9200 0.9102 0.8934 0.8872 0.8716 3.93 5.13 5.83 6.33 6.71
L2-PPI-f 0.9276 0.9172 0.9032 0.8984 0.8860 4.04 5.32 6.17 6.81 7.36
L2-PPI-p 0.9412 0.9302 0.9188 0.9160 0.9042 4.27 5.62 6.50 7.16 7.72
L1-PPI-f 0.9290 0.9170 0.9034 0.8982 0.8856 4.04 5.33 6.17 6.81 7.36
L1-PPI-p 0.9412 0.9300 0.9192 0.9166 0.9034 4.27 5.62 6.50 7.16 7.72
SPI 0.9508 0.9460 0.9432 0.9484 0.9472 3.90 5.25 6.13 6.75 7.23

21



Table 8: The CVR and LEN of PIs for Model 7

Model 7: Xt = log(4 · e0.9·Xt−2 + 5 · e0.9·Xt−1 + 6 · e0.9·Xt−3) + ϵt

CVR for each step LEN for each step
T = 400 1 2 3 4 5 1 2 3 4 5

QPI-f 0.9450 0.9426 0.9442 0.9384 0.9376 3.88 4.02 4.28 4.70 4.87
QPI-p 0.9484 0.9444 0.9470 0.9410 0.9400 3.92 4.06 4.33 4.75 4.92
L2-PPI-f 0.9472 0.9434 0.9476 0.9394 0.9406 3.91 4.05 4.31 4.75 4.93
L2-PPI-p 0.9498 0.9460 0.9498 0.9442 0.9428 3.94 4.09 4.36 4.80 4.98
L1-PPI-f 0.9462 0.9430 0.9474 0.9408 0.9406 3.91 4.05 4.31 4.75 4.93
L1-PPI-p 0.9484 0.9466 0.9486 0.9444 0.9434 3.95 4.09 4.36 4.80 4.98
SPI 0.9462 0.9452 0.9480 0.9446 0.9432 3.90 4.04 4.31 4.76 4.94

T = 100

QPI-f 0.9330 0.9404 0.9298 0.9238 0.9278 3.82 3.96 4.19 4.56 4.70
QPI-p 0.9436 0.9496 0.9440 0.9354 0.9390 3.99 4.14 4.38 4.76 4.91
L2-PPI-f 0.9400 0.9464 0.9404 0.9332 0.9408 3.94 4.09 4.35 4.77 4.95
L2-PPI-p 0.9498 0.9536 0.9504 0.9430 0.9508 4.10 4.26 4.53 4.98 5.16
L1-PPI-f 0.9396 0.9466 0.9404 0.9312 0.9406 3.94 4.09 4.35 4.77 4.95
L1-PPI-p 0.9504 0.9548 0.9508 0.9422 0.9504 4.10 4.26 4.54 4.98 5.16
SPI 0.9502 0.9542 0.9484 0.9468 0.9550 3.90 4.04 4.31 4.76 4.94

T = 50

QPI-f 0.9152 0.9132 0.9202 0.9044 0.9020 3.71 3.89 4.12 4.46 4.60
QPI-p 0.9366 0.9402 0.9428 0.9340 0.9284 4.04 4.25 4.50 4.87 5.03
L2-PPI-f 0.9344 0.9312 0.9366 0.9254 0.9236 3.97 4.13 4.42 4.88 5.08
L2-PPI-p 0.9518 0.9506 0.9570 0.9460 0.9432 4.31 4.49 4.82 5.31 5.54
L1-PPI-f 0.9340 0.9310 0.9360 0.9264 0.9248 3.97 4.13 4.42 4.88 5.08
L1-PPI-p 0.9528 0.9494 0.9554 0.9450 0.9434 4.31 4.50 4.82 5.32 5.54
SPI 0.9442 0.9464 0.9520 0.9486 0.9508 3.90 4.05 4.31 4.76 4.94
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5 Empirical data analyses

In this section, we deploy two real datasets to check the performance of our forward bootstrap methods. These
empirical studies could verify the performance of our forward bootstrap prediction algorithm when the model
is misspecified. If there is no strong evidence to support the choice of the underlying model in practice, we may
apply the forward bootstrap prediction with the non-parametric estimator; see Politis and Wu (2023).

5.1 Flu data

We take the flu data from the R package astsa, which describes the monthly pneumonia and influenza deaths
per 10000 people in the United States from 1968 to 1978. Due to the epidemic nature of the flu, the behavior
of the series is quite different when the rates go above some threshold value than when it is below the value.
Thus, a TAR model is a natural candidate to model the flu dataset. Since the slightly downward trend exists
in the original series, we consider the first-order differencing and then focus on the prediction of the resulting
series, denoted by {yi}131i=1. This series is plotted below.
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Figure 1: The first-order differencing series of the flu data

To perform TAR in practice, we apply the tsDyn package built in Stigler (2020). We consider a TAR(2)
model in which the threshold value r is determined by the built-in function setar automatically. To perform
multi-step ahead predictions, the setar function can integrate a bootstrap method described in the book of
Franses and Van Dijk (2000) to return point prediction and prediction interval denoted by PI-tsDyn. This
kind of PI is in a similar spirit to the QPI defined in this paper. As we expect, such PI will suffer from the
undercoverage issue in the finite sample case. To compare this PI-tsDyn with our PPI comprehensively with
131 data points, we take a rolling-window pseudo-out-of-sample (rwPOOS) prediction experiment to measure
the performance of these two PIs. In short, rwPOOS predictions procedure implies that we use {Y1, · · · , YW } to
predict YW+h; then use {Y2, · · · , YW+1} to predict YW+1+h respectively, and so on till we exhaust all available
data; here W is the size of the training window and h is the desired prediction horizon; see Wu and Karmakar
(2023) for more description of this prediction setting.

With the flu data, to make sure we have enough prediction to compute the average performance, we take
W = 50 and consider h = 2, . . . , 5. We take the nominal confidence level to be 0.95. To simplify the presentation,
we only consider L2-PPI with fitted or predictive residuals. We take K = 1000 and M = 200 to build bootstrap
PIs. The average empirical coverage rate and length of these two types of PIs are presented in Table 9. We can
see the PPI works better than PI-tsDyn. For 1-step to 4-step ahead predictions, the empirical coverage rates
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of PI-tsDyn are below 0.9 even though the nominal confidence level is 0.95. On the other hand, our PPIs can
give a more accurate coverage rate with a slightly larger length.

Table 9: The CVR and LEN of different PIs on the flu dataset under nominal confidence level 0.95

Flu data: TAR(2)

CVR for each step LEN for each step
W = 50 2 3 4 5 2 3 4 5

PI-tsDyn 0.883 0.896 0.883 0.935 0.252 0.357 0.410 0.458
L2-PPI-f 0.922 0.935 0.935 0.974 0.399 0.453 0.493 0.492
L2-PPI-p 0.961 0.974 0.987 0.987 0.544 0.680 0.699 0.695

5.2 Unemployment rates data

We also take the UnempRate data from R package astsa, which records the monthly U.S. unemployment rate
from 1948 to 1979. As indicated by the work of Rothman (1998), the unemployment rate increases quickly in
recessions but declines relatively slowly during expansions. They suggested a specific Exponential Autoregressive
Model (EAR) shown below to model such an asymmetric business cycle:

Yt = c+ exp(−Y 2
t−1) · Yt−1 + Yt−2 + ϵt.

After inducing the stationarity in the quarterly unemployment rate series by a so-called log-linear detrending
method, they showed that the above EAR(2) model outperformed standard AR(2) and TAR models. To remove
the trend in the original series, we took logarithms on the quarterly rate series first and then detrended the
series by the detrend function in R with order to be 5. The final series {yi}124i=1 are plotted below.
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Figure 2: The log-linear detrended series of the quarterly UnempRate data

We still focus on data during this period and apply the above EAR(2) model to fit {yi}124i=1. We still take
the rwPOOS prediction procedure introduced in Section 5.1 to measure the performance of different PIs on this
single real data set. As a comparison, we take the iterative regression prediction as the benchmark, and then
the naive PI can be built under the assumption of normality of error by lm function. We denote the naive PI by
PI-Naive. All the prediction settings are the same as the empirical study in Section 5.1. The average empirical
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coverage rate and length of these two types of PIs are presented in Table 10. As we can find, the PI-Naive has
a worse and worse coverage rate for longer prediction horizons. On the other hand, two PPIs can improve the
coverage rate.

Table 10: The CVR and LEN of different PIs on the UnempRate dataset under nominal confidence
level 0.95

UnempRate data: EAR(2)

CVR for each step LEN for each step
W = 50 2 3 4 5 2 3 4 5

PI-Naive 0.957 0.929 0.914 0.886 0.580 0.577 0.576 0.576
L2-PPI-f 0.971 0.943 0.971 0.957 0.658 0.701 0.710 0.718
L2-PPI-p 0.971 0.957 0.943 0.971 0.690 0.715 0.727 0.736

6 Conclusions and discussions

In the paper at hand, we analyzed prediction inference for a specific form of NLAR model which possesses
separate mean and variance functions. When we know the model and innovation information, we show that the
simulation-based approach can return consistent predictions. When we only know the form of parametric NLAR
models, the bootstrap-based prediction is also shown to be consistent with true optimal future values. Moreover,
we can obtain asymptotically valid or pertinent prediction intervals. In addition, we show the possibility that
our algorithm could serve for prediction tasks with general NLAR models. Furthermore, we propose the idea of
combining predictive residuals with the bootstrap-based NLAR prediction. The simulation and empirical studies
verify the superiority of our methods. Constructing pertinent prediction intervals with predictive residuals can
improve the empirical CVR, especially for short data.

Notice that Wolf and Wunderli (2015) proposed a so-called Joint Prediction Region (JPR) to cover the whole
future path with the desired probability 1 − α and allow at most k − 1 number of true future predictions to
fall outside the JPR. However, they omitted the methodology of constructing the prediction vector and argued
that it could be generated by the estimated probability mechanism. Our contribution is solving the difficulty of
multi-step ahead prediction of NLAR models. We can expect that the JPR can be combined with our forward
bootstrap predictions. Then, a JPR centered at meaningful optimal L1 or L2 predictions can be built even for a
general non-linear model. Moreover, the JPR also suffers from undercoverage for finite sample cases since there
is no procedure to capture the estimation variability in JPR. Thus, our forward bootstrap prediction idea can
be applied to JPR to get the pertinent property.
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