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Abstract Many models for environmental data that are observed in time and space have been proposed in the lit-

erature. The main objective of these models is usually to make predictions in time and to perform interpolations in

space. Realistic predictions and interpolations are obtained when the process and its variability are well represented

through a model that takes into consideration its peculiarities. In this paper, we propose a spatio-temporal model

to handle observations that come from distributions with heavy tails and for which the assumption of isotropy

is not realistic. As a natural choice for a heavy-tailed model, we take a Student’s-t distribution. The Student’s-t

distribution, while being symmetric, provides greater flexibility in modeling data with kurtosis and shape different

from the Gaussian distribution. We handle anisotropy through a spatial deformation method. Under this approach,

the original geographic space of observations gets mapped into a new space where isotropy holds. Our main re-

sult is, therefore, an anisotropic model based on the heavy-tailed t distribution. Bayesian approach and the use of

MCMC enable us to sample from the posterior distribution of the model parameters. In Section 2, we discuss the

main properties of the proposed model. In section 3 we present a simulation study, showing its superiority over

the traditional isotropic Gaussian model. In Section 4, we show the motivation that has led us to propose the t

distribution-based anisotropic model – the real dataset of evaporation coming from the Rio Grande do Sul state of

Brazil.

Keywords Student’s-t process · spatio-temporal modeling · spatial deformation · Markov Chain Monte Carlo ·

heavy tails.

1 Introduction

In the previous half of a century, space-time models have been extensively explored, one of the main goals being

the exploration of environmental phenomena. The leading applications include: spatial and spatio-temporal vari-

ation of the atmospheric pollution, the moisture content in the soil, relationships between the presence of certain
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diseases and pollutants, and rainfall estimation. Model based approaches have been proposed to deal with this

kind of data not only for the understanding of the phenomena themselves (including exploiting the influence the

other variables might exert on them), but also for the purpose of performing predictions in time and interpolation

in space.

A common approach to handle spatial correlation is by including in the model a spatial random effect (Kang and

Cressie 2011). The usual choice is to select as a prior distribution a Gaussian process with a covariance function

that is isotropic so that such covariance depends only on the distance between locations. Isotropic models are

useful and very popular due to their ease in estimating model parameters. In the era of global warming, however,

the climate models based on gaussianity have to be replaced by more realistic ones that reflect the heavy-tailed

nature of climate. We now observe much more extreme behavior and atypical observations. The effects of El Niño

and La Niña, for example, can cause significant changes in temperature and precipitation regimes depending on

the location and time interval in which they operate (Ropelewski and Halpert 1987; Marengo et al. 2017).

Another example of this scenario is generated by the climatic phenomena known as cold fronts and heatwaves.

When the objective is to study the temperature in places where, in a given period, these two climatic phenomena

may occasionally occur, lower temperatures (produced by cold fronts) or higher temperatures (produced by heat-

waves) will be observed influencing the average temperature of the region. An example of this case appears in

South America, where the region’s temperature can be modified by the occurrence of cold fronts from the south

pole (Reboita et al. 2010). On the other hand, climatic and meteorological phenomena, topography, geographic

location, proximity to the ocean, and the time interval to be considered in the study can also shape the covariance

structure of some environmental variables. Several studies in the literature exemplify this situation, e.g., Morales

and Vicini (2020) conclude that the spatial covariance structure of extreme rainfall frequency in the States of

Maranhão and Pı́au, in Brazil, is anisotropic due mainly to the congruence of three types of climatic systems in

this region. Other examples of anisotropic processes in this context can be seen in Sampson and Guttorp (1992);

Damian et al. (2001); Schmidt and O’Hagan (2003); Bruno et al. (2008); Schmidt et al. (2011); Morales et al.

(2013) and Fouedjio et al. (2015).

The main motivation for this work came from the spatiotemporal analysis of evaporation in the state of Rio Grande

do Sul, Brazil. The dataset is measured through time in 11 monitoring stations, and our main goal is to propose a

methodology that provides robust interpolation for points in the region of interest. In the preliminary descriptive

analysis, we observed that the evaporation time series has extremely low and high measurements compared to the

average value of the time series (see Figure 8 in Appendix A). Therefore, to assume that the data generating process

has Gaussian distribution seems to be neither adequate nor realistic. Working under the normality assumption

would be too restrictive, and the model would suffer from the lack of robustness in the presence of outliers.

Another aspect that we consider in the analysis of these data is to use an anisotropic correlation function that allows

to include the complex iteration of climatic phenomena (e.g., frontal systems that move from the Pacific Ocean,
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cyclones and cold fronts (Reboita et al. 2010)), topography and geographic location in this region. Therefore, our

goal is to provide a working and relatively simple model that will be usable for the datasets with the presence

of outliers from anisotropic spatial processes with heavy tails distribution. As a natural choice for a heavy-tailed

model, we take a Student’s-t distribution. The Student’s-t distribution, while being symmetric, provides greater

flexibility in modeling data with kurtosis and shape different from the Gaussian distribution. When the number

of degrees of freedom in a Student’s-t is large enough, it gets close to the normal one. Estimating the number of

degrees of freedom one can tell if it is justifiable to drop the normality assumption in favor of a Student’s-t process.

We would recommend the choice of a Student’s-t when its degrees of freedom are less than 30. In geostatistical

research, the Student’s-t distribution has already gained popularity, for example, in the case of modelling the

soybean yield (see e.e. Assumpcao et al. (2011); do Prado et al. (2013) and Schemmer et al. (2017)).

In our paper, we propose a model that can be represented as a sum of two components. The first is a mean

process which varies smoothly in time, while the second is a purely spatial component. The mean process in-

corporates time variation through a state space approach (West and Harrison 1997). The model assumes spatial

dependency through the specification of a spatial correlation function for the purely spatial component, and it

handles anisotropy through spatial deformation (Sampson and Guttorp 1992). Under this approach, the original

geographic space of observations gets mapped into a new space where isotropy holds. Working under the Bayesian

approach to inference, we propose efficient MCMC methods to sample from the posterior distribution of the un-

known parameters in the model. Also, extra steps can be added to the algorithm to perform time forecast and

interpolation in space. The idea of how to perform interpolation under the proposed anisotropic construction is

simple: firstly a grid of points is built in the original space, then they are mapped into the deformed space, and the

interpolation if performed there under the hypotheses of isotropy.

Our paper is organized as follows: Section 2 presents the proposed Student’s-t variate distribution for non-

homogeneous, heavy tailed, anisotropic space-time processes. This section also explains the inference method,

the computational aspects, and the interpolation procedure. Section 3 presents a simulation study aiming to mea-

sure performance in terms of accuracy of parameter estimation, goodness-of-fit, and interpolation of the proposed

model compared to simpler models. In Section 4, the spatio-temporal model is applied to the evaporation dataset.

Section 5 presents conclusions and a discussion of possible extensions of our research.

2 Student’s-t space-time models

Consider a geographic region of interest denoted by G ⊂ Rp, and suppose that a random process is observed at

T distinct moments in time and at n fixed geographic locations in G. Denote these locations by s1, . . . ,sn. Under

the typical assumption that p = 2 we can define si = (xi,yi)
′, where xi and yi represent coordinates in the two-

dimensional space.
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We assume that the observations Yt = (Y (s1, t), . . . ,Y (sn, t))′, t = 1, . . . ,T, can be explained by a sum of two

independent components:

Y (si, t) = µ(si, t)+W (si, t), i = 1, . . . ,n, t = 1, . . . ,T,

with µ(·, ·) representing the mean of the process and W (·, ·) representing deviations from the mean. In matrix

notation, the random vector of observations Y can be written as

Y = µ +W,

where µ and W are n× T matrices defined as µ = (µ1, . . . ,µT ), with µt = (µ(s1, t), . . . ,µ(sn, t))′; and W =

(W1, . . . ,WT ), with Wt = (W (s1, t), . . . ,W (sn, t))′.

Different specifications could be used for the mean µ . One simple approach would be to consider a determin-

istic variation of the process in time and space through a linear combination of explanatory variables, in the

form:

µ(si, t) = X′i,tβ ,

where X′i,t is a vector of explanatory variables observed for the location si and time t, and β are the correspond-

ing regression coefficients. A more flexible approach can incorporate space and time variation in the regression

coefficients, such that

µ(si, t) = X′i,tβi,t ,

possibly incorporating smooth variation in time and space in the coefficients β .

In this paper, we assume a stochastic variation in time through a state space model formulation (West and Harrison

1997) where we assume temporal variation in the regression coefficients. More specifically, we have that:

Structural equation: µ(si, t) = F′itβt , (1)

System equation: βt = Gtβt−1 +ht ,ht ∼ N(0,H),

where Fit is a known vector which can include covariates, and Gt is a known transition matrix.

We assume that the elements Wt of the component W are independent, for t = 1, . . . ,T , and all the temporal

dependence is incorporated into the mean process. We then assume a Student’s-t process with smooth variation in

space for each Wt. We propose the use of the Student’s-t distribution as it is a heavy tailed distribution which can

be easily specified by its mean vector and covariance matrix, making it simple to perform model interpolation and

forecast as will be presented later on this paper. Other alternative heavy tailed distributions could be considered,
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as the family of elliptic distributions proposed by De Bastiani et al. (2015). Note that the Student’s-t distribution

is a member of this family. We then have that:

Wt ∼ tν(0,Σ),

where tν(a,A) denotes the multivariate Student’s-t distribution with mean vector a, covariance matrix A and ν

degrees of freedom; 0 indicates a vector of 0’s of appropriate size; Σ is defined as Σ = σ2
ξ

R(φ) +σ2
ε In, with

In representing the identity matrix of order n. R(φ) is a correlation matrix, such that R(φ)[i, j] = ρφ (si,s j) for

i, j = 1, . . . ,n, where ρφ is a valid correlation function parametrized by φ , which incorporates spatial dependence

in the model. The variance parameter σ2
ε represents a nugget effect, while σξ represents the variability of the

component which incorporates the spatial dependence. More details on the multivariate t distribution can be seen

in Roth (2013).

Another way of representing Wt , which helps simplifying the algorithms that will be proposed for inference later

on, is through the Normal-Gamma representation (see for example Carlin et al. (1992) and Chib and Ramamurthy

(2014)) including a latent vector U = (U1, . . . ,UT ), such that Wt = U−1/2
t Zt , in which Zt

iid∼ Nn(0,Σ) and Ut
iid∼

G(ν/2,ν/2). Here, Nn(a,A) denotes the multivariate Normal distribution of dimension n with mean vector a and

covariance matrix A; and G(α,β ) indicates the Gamma distribution with mean α/β and variance α/β 2. That

way, we can write:

Yt = µt +U−1/2
t Zt , t = 1, . . . ,T.

To handle anisotropy, we follow the idea proposed by Sampson and Guttorp (1992), that considers a function d(·)

to map the original geographic coordinates from space G to the new space D ⊂ Rq, q ≥ p (we assume q = 2),

where the hypothesis of isotropy hold. That way, for each geographic location si in G ⊂ R2 there is a location

d(si) = di = (dxi ,dyi)
′ in the new deformed space D⊂ R2, i = 1, . . . ,n.

Denote by S = (s1, . . . ,sn)
′ the matrix of geographic coordinates in the original space with dimension n× 2 and

dG = (d1, . . . ,dn)
′ the corresponding matrix on the deformed space D with the same dimension. Under isotropy

at the new space D, ρφ (si,s j) will only depend on si and s j through the Euclidean distance between their corre-

sponding locations in the deformed space D, i.e. di and d j. Particularly, we work with the exponential correlation

function ρφ (si,s j) = e−φ |di−d j| and wave correlation function ρφ (si,s j) =
φ sin(|di−d j |/φ)

|di−d j | , but any other valid spatial

correlation function could have been specified.

The models are completed with prior specifications for the unknown parameters, which will be described in detail

in Section 2.1.
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2.1 Prior specifications

Under the Bayesian point of view, to complete the model specification, we must specify prior distributions for

all unknown model parameters. Here the unknown model parameters are the geographic coordinates d(·) in D-

space; the Student’s-t degrees of freedom ν ; the variance of the deformation σ2
d , the variance of the purely spatial

component σ2
ξ

; the variance of the error term σ2
ε ; the spatial correlation function parameter φ ; the regression

coefficients β ; and the covariance matrix of the system equation H. The specified prior distributions for these

parameters will be presented below. Note that since the stochastic description of β is completely done in the

model, they do not require further prior specification except for the prior specification of β0.

– Coordinates in D-space

We assume for d(·) the prior specification proposed by Schmidt and O’Hagan (2003), given by

d(·)∼ GP(g(·),σ2
d ρψ(·)),

which is a Gaussian Process where g(·) is the mean function, and σ2
d ρψ(·) is a covariance function given by

the multiplication of a covariance matrix σ2
d , and a scalar function ρψ(·). The mean function g(·) typically

depends on the locations s. Particularly, we assume the identity function g(s) = s. We assume σ2
d to be a

2×2 diagonal matrix, which controls the variance of the deviation in each coordinate from the original space.

Finally, ρψ(·) is defined as Gaussian correlation function, such that ρψ(x) = exp{−ψx2}. It is not an easy

task to estimate ψ , and so we will consider it to be known. Reasonable approximations for this parameter

were proposed by Morales et al. (2013) and Schmidt and O’Hagan (2003), and they are given respectively by

ψ =−2log(0.05)/maxi, j=1,...,n(| si− s j |)2, and ψ = 1/(2×maxi, j=1,...,n(| si− s j |)2).

Through properties of the Gaussian process it is easy to see that dG will follow a Normal matrix-variate

distribution with mean S, row covariance matrix σ2
d , and column covariance matrix Rd , with Rd being the

matrix whose elements are obtained through the Gaussian correlation function ρψ(·). That way, the prior

density probability function for the parameter dG given σ2
d is:

π(dG | σ2
d) ∝| σ2

d |−n/2 exp
{
−1

2
tr[(dG−S)′(σ2

d)
−1(dG−S)R−1

d ]

}
.

– Prior distribution for the degrees of freedom parameter ν

The prior distribution for parameter ν is the same proposed by Cabral et al. (2012), that is:

ν |λ ∼ G(1,λ )

λ ∼U(aλ ,bλ )

with U(a,b), where 0 < a < b < 1, denoting the Uniform distribution in the interval (a,b).
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– Prior distribution for the parameters σ2
ξ

, σ2
ε and φ

The choice of prior distribution for the parameters σ2
ξ
, σ2

ε and φ must be done carefully, as improper prior

distributions for these parameters can lead to improper posterior distributions. That way, it is recommended

to use informative priors for them. Thus, we adopt the prior distribution proposed by Schmidt and Gelfand

(2003); Morales et al. (2013) for φ , that is: φ ∼ G(aφ η ,η), where aφ =−2log(0.05)/max(| si− s j |).

The prior distributions for the variances σ2
ξ
, σ2

ε are based on an alternative representation proposed by Yan

et al. (2007) for matrix Σ . They propose writing

Σ = σ
2[(1−κ)R(φ)+κIn],

such that σ2 =σ2
ξ
+σ2

ε and κ =
σ2

ε

σ2 . Thus, κ represents the fraction of the total variability of Y that corresponds

to the measurement error. One advantage of this parametrization is that κ is limited. The prior distributions of

σ2 and κ proposed by Yan et al. (2007) are

π(κ) ∝
κ

aξ−1(1−κ)aε−1

[bξ κ +bε(1−κ)]aξ+aε
, κ ∈ (0,1),

σ
2 | κ ∼ GI

(
aε +aξ ,

bξ

1−κ
+

bε

κ

)
.

These prior distributions are induced by the prior distributions for σ2
ξ

and σ2
ε , given by σ2

ξ
∼ IG(aξ ,bξ ) and

σ2
ε ∼ IG(aε ,bε), where IG(aIG,bIG) denotes the inverse Gamma distribution with mean bIG/(aIG−1).

– Prior distribution for the parameter β0

For the regression coefficient β0 we assign a normal conjugate prior, given by

β0 ∼ N(m0,C0).

– Prior distribution for the covariance matrix H

We assume a Inverted Wishart prior distribution for the covariance matrix H, written as:

H∼WI−1
n0

(S0).

We assume that the prior specifications given above are independent, and define θ = {β ,ν ,λ ,σ2,κ,φ ,dG,σ2
d ,H}

as the complete set of unknown model parameters. Thus, the prior distribution for θ can be written as:

π(θ) = π(β )π(ν | λ )π(λ )π(σ2)π(κ)π(φ)π(dG | σ2
d)π(σ

2
d)π(H). (2)
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2.2 Inference under the proposed spatial model

The likelihood function of θ given the observed processes {y : yt , t = 1, . . . ,T} can be written as:

L(θ | y) =
T

∏
t=1

Γ ( p+ν

2 )

Γ ( ν

2 )π
p/2 ν

−p/2 | Σ |−1/2
(

1+
d(yt ,θ)

ν

)− p+ν

2
, (3)

where d(yt,θ) = (yt − µt)
′Σ−1(yt − µt). Note that the augmented likelihood function including U presents a

simpler form, as (yt|Ut,θ ) follows a normal distribution. The joint likelihood of (U,θ) is given by

L(U,θ | y) ∝

T

∏
t=1
|Qt |−1/2 exp

{
−1

2
(yt −µt)

T Q−1
t (yt −µt)

}
, (4)

where Qt = U1/2
t ΣuU1/2

t
T

.

It is interesting as well to obtain the marginal distribution of the observed response in each time and location. We

have that Y (si, t) = µ(si, t)+W (si, t), and, under our specification in (2), considering that β0 ∼N(m0,C0), µ(si, t)

follows a normal distribution. After a little algebra we obtain that

E(µ(si, t)) = F′itG
tm0,

V (µ(si, t)) = (F′itG
t)C0(F′itG

t)T +
t−1

∑
i=0

(F′itG
i
t)H(F′itG

i
t)

T .

On the other hand, Wt = (W (s1, t),W (s2, t), . . . ,W (sn, t))T ∼ tν(0,Σ). The marginal distribution of W (si, t) is a

zero mean Student’s-t distribution with ν degrees of freedom and variance given by ν/(ν − 2)Σi, where Σi is

the ith element of the diagonal of matrix Σ . Therefore, the marginal distribution of Y (si, t) is a sum of a normal

distribution and a Student’s-t distribution. This is a symmetric distribution centered around its mean and with

tails heavier than a normal distribution. The sum gets close to the normal distribution then the variance of the

normal part is large when compared to the variance of the t part. Therefore, our method shows better performance

comparing to a normal model when the variability of the observations in space is not much smaller than the

variability in time.

Combining the likelihood function in (4) with the prior distribution of θ defined in (2), and the distribution of U|θ

we obtain the posterior distribution given by

π(U,θ | y) ∝ L(θ | y,U)π(U|θ)π(θ). (5)

The posterior distribution in (5) does not have a closed form so the MCMC methods are proposed to obtain samples

of this distribution.
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The proposed algorithms combine Gibbs sampling (when the full conditional is simple to sample from) and

Metropolis-Hastings steps (Metropolis et al. 1953). In the next section, we present details of the implementation

of the MCMC algorithm proposed for the approximation of (5).

2.3 Approximate Bayesian computation

We propose a MCMC algorithm based on Gibbs sampling and Metropolis-Hastings steps to generate from the

posterior distribution of the model parameters. We consider the idea of data augmentation (Kuo and Yang 1996;

Neal and Kypraios 2015; Chib and Ramamurthy 2014) under the Normal-Gamma representation of Wt . Under the

proposed model, the full conditional distributions for the parameters β , H, σ2 and U have a closed form and these

parameters can be sampled through Gibbs Sampling. Their full conditionals are given below, where Θ−θ denotes

the vector of parameters Θ excluding parameter θ :

– β0 | y,θ−β0 ∼ N(A0,B0),

with B0 = (G′1Ψ
−1G1 +C−1

0 )−1 and A0 = B0(C−1
0 m0 +G′1Ψ

−1β1);

– βt | y,θ−βt ,Ut ∼ N(At ,Bt),

with Bt = (Ψ−1 +F′tΣ
−1
t Ft +G′t+1Ψ

−1Gt+1)
−1 and At = Bt(F′tΣ

−1
t yt +Ψ−1Gtβt−1 +Gt+1Ψ

−1βt+1),

t = 1, . . . ,T −1, where Ft = (F1t ,F2t , · · · ,Fnt)
′;

– βT | y,θ−βT ,Ut ∼ N(AT ,BT ),

with BT = (Ψ−1 +FT Σ
−1
t FT )

−1 and AT = BT (Ψ
−1GT βT−1 +F′T Σ

−1
t yT );

– H | θ−Ψ ∼WI−1
n∗0

(S∗0),

with n∗0 = n0 +T and S∗0 =
1
n∗0
(∑T

t=1(βt −Gtβt−1)(βt −Gtβt−1)
′+n0S0);

– σ2 | y,θ−σ2 ,U∼ GI(aσ ,bσ ),

with aσ = nT/2+aε +aξ and bσ = 1
2 ∑

T
i=1(yt −µt)

′(U−1
t ∆)−1(yt −µt)+

bξ

1−κ
+ bε

κ
, where

∆ = (1−κ)R(φ)+κIn;

– Ut | y,θ ∼ G(aU ,bU ),

with aU = nT+ν

2 and bU = 1
2 [(yt −µt)

′Σ−1(yt −µt)+ν ], with Σt =U−1
t Σ , for t = 1, . . . ,T .
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The full conditional distributions for the parameters κ, φ , ν , and dG do not have a closed form and they are

sampled through Metropolis-Hastings steps. Their full conditionals are given below:

π(κ | y,θ−κ ,U) ∝ | ∆ |−T/2 exp

{
−1

2

T

∑
t=1

(yt −µt)
′
Σ
−1
t (yt −µt)− (

bε

1−κ
+

bε

κ
)σ2

}
κ

aξ−1(1−κ)aε−1

[bξ κ +bε(1−κ)]aξ+aε
;

π(φ | y,θ−φ ,U) ∝ | ∆ |−T/2 exp

{
−1

2

T

∑
t=1

(yt −µt)
′
Σ
−1
t (yt −µt)−bφ φ

}
φ

aφ−1;

π(ν | y,θ−ν ,U) ∝

[(
ν

2

) ν
2

Γ ( ν

2 )

]T

exp
{
−
(

∑
T
t=1 Ut

2
+λ

)
ν

} T

∏
t=1

U
ν
2

t ;

π(dG | y,θ−dG ,U) ∝ exp
{

1
2

tr[(dG−S)′(σ2
d)
−1(dG−S)R−1

d ]

} T

∏
t=1
| Σt |−1/2 exp

{
−1

2

T

∑
t=1

(yt −µt)
′
Σ
−1
t (yt −µt)

}
.

Table 1 shows the transition functions and acceptance probability used in the Metropolis-Hastings algorithm to

obtain samples of the full conditional distributions listed above. Details about approximation for the posterior

distribution of d can be see in Morales and Vicini (2020).

Table 1 Proposed function and acceptance probability considered in the Metropolis-Hastings steps.

Proposed function π∗(· | θi) α(θ ( j),θ prop)

β N(· | β ,uI) π(β (prop)|θ−β ,y)
π(β ( j)|θ−β ,y)

σ2 G(· | σ2×u,u)
π(σ2 prop|θ−σ2 ,y)π∗G(σ

2 prop|σ2( j)×u,u)

π(σ2( j)|θ−σ2 ,y)π∗G(σ2( j)|σ2 prop×u,u)

φ G(· | φ ×u,u) π(φ prop|θ−φ ,y)π∗G(φ
prop|φ ( j)×u,u)

π(φ ( j)|θ−φ ,y)π∗G(φ
( j)|φ prop×u,u)

κ U(· |max{0,κ−u},min{κ +u,1}) π(κ prop|θ−κ ,y)π∗U (κ prop|max{0,κ( j)−u},min{κ( j)+u,1})
π(κ( j)|θ−κ ,y)π∗U (κ( j)|max{0,κ prop−u},min{κ prop+u,1})

ν G(· | ν×u,u) π(ν prop|θ−ν ,y)π∗G(ν
prop|ν( j)×u,u)

π(ν( j)|θ−ν ,y)π∗G(ν
( j)|ν prop×u,u)

λ U(· |max{c,λ −u},min{λ +u,d}) π(λ prop|θ−λ ,y)π∗U (λ prop|max{c,λ ( j)−u},min{λ ( j)+u,d})
π(λ ( j)|θ−λ ,y)π∗U (λ ( j)|max{c,λ prop−u},min{λ prop+u,d})

It is important to point out that one of the main goals in Geostatistics is to be able to make predictions of the process

of interest at any set of points in the region of study. After obtaining samples from the posterior distribution of the

unknown model parameters, extra steps can be added to the algorithm to sample from predictive distributions, as

presented in Section 2.4.

2.4 Interpolation

One of the main goals in geostatistics is to allow predictions of the process of interest anywhere in the region

of study after observing the process at n fixed locations in space. This section presents the interpolation method

proposed here, which consists of two main steps: first mapping the new locations to the D-space and then, given

these new locations, interpolating the observations in the original space.
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Let SNO = (sn+1, . . . ,sn+m) be a matrix of dimension 2×m, representing m ungauged sites of interest in G

space. Given these locations and the unknown parameters of the model, we can obtain a distribution for dNO =

(dn+1, . . . ,dn+m), which are the corresponding m ungauged sites in the deformed D space, based on properties of

the matrix-variate normal distribution. Firstly, note that

 dG

dN0

 | R∼ N


 S

SNO

 ,σ2
d ,R

 ,
where N(a,A,B) denotes the matrix-variate normal distribution with mean a, row covariance matrix A and column

covariance matrix B. R =

 RA1 R′A12

RA12 RA2

, in which RA1 represents the correlation matrix of dG, RA2 represents

the correlation matrix of dNO and RA12 represents the correlation matrix between dG and dNO. Then, it can be

shown that:

vec(dNO) | vec(dG)∼ N(A∗2,Σ
∗
A2
), (6)

where A∗2 = vec(SNO)+ (I2⊗RA12 R−1
A1
)(vec(dG)− vec(S)) and Σ ∗A2

= σ2
d ⊗ (Im−R′A12

R−1
A1

RA12), with vec(A)

denoting a vectorized version of matrix A and ⊗ denoting the Kronecker product.

Following equation (6), samples from the conditional distribution of dNO can be obtained, adding an additional

step to the proposed MCMC algorithm.

Now let YTotal
t =

(
Yt ,YNO

t
)′ be a vector such that YTotal

t | θ ∼ tν(µTotal
t ,Σ Total) where YNO

t =(Yt(sn+1), . . . ,Yt(sn+m))
′

is a vector of non-observed values of the process Y (·, t) at the ungauged sites sn+1, . . . ,sn+m ∈ G, µTotal
t =(

µt ,µ
NO
t
)′ where µNO

t corresponds to the mean of the process at (sn+1, . . . ,sn+m) at time t. We also have that

Σ Total =

 Σ Σ ∗

Σ ∗′ ΣNO,

 where Σ NO represents the covariance matrix of YNO
t and Σ ∗, the covariance matrix be-

tween Yt and YNO
t . Note that given dNO and the collection of parameters θ , it is easy to evaluate the corresponding

Σ ∗ and Σ NO.

Through properties of the multivariate t distribution (Ding 2016) we obtain:

YNO
t |Yt ,θ ∼ tν+n

(
µNO|∗,

ν +d1

ν +n
ΣNO|∗

)
, (7)

where

µNO|∗ = µ
NO
t +Σ

∗′
Σ
−1(Yt −µt),

ΣNO|∗ = ΣNO−Σ
∗′

Σ
−1

Σ
∗,
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and d1 is the squared Mahalanobis distance of Yt from µt with scale matrix Σ , given by:

d1 = (Yt −µt)
′
Σ
−1(Yt −µt).

That way, to sample from YNO
t |Yt ,θ we add an extra step on the MCMC algorithm after sampling from the condi-

tional distribution of dNO. The samples obtained from YNO
t |Yt ,θ are used to compute an approximate predictive

distribution of YNO
t |Yt , and then to compute the posterior mean of YNO

t |Yt through Monte Carlo.

3 Simulation exercise

In this section, we present a simulation exercise aiming firstly to validate the algorithm used to sample from the

posterior distribution of the model parameters and then quantify the proposed approach’s performance in terms

of accuracy of parameters estimation compared to simpler models. We also aim to compare the proposed and

alternative models through their interpolation performance.

For the simulation, we assume that observations are made at 100 periods of time, and at 16 points in space, located

in a 4×4 regular grid in a region of interest G. The data are generated by the following model:

Yt ∼ tν(Ftβt ,Σ), (8)

where

βt = βt−1 +ht ,ht ∼ N(0,H), t = 1, . . . ,100

with β0 = (2,3,0.5); Ft is a matrix 16× 3 with elements Fti = (1,si,1,si,2), i = 1, . . . ,16, where si, j, j = 1,2

denotes the jth coordinate of location si; Σ = σ2[(1− κ)R(φ)+ κI], with σ2 = 0.2, κ = 0.005; and R(φ) is a

matrix with elements Ri j = exp{−φ |di−d j|}, where φ = 0.3, di ∼ GP(si,σ
2
d ργ), ργ(si,s j) = exp(−γ|si− s j|2),

σ2
d = diag(0.45,0.45) and γ = 3.

We simulate from the proposed model considering four different scenarios, varying the number of degrees of

freedom in the Student’s-t process: ν = 3 (Scenario 1), ν = 10 (Scenario 2), ν = 30 (Scenario 3), and ν→∞ which

corresponds to Yt ∼ N(Ftβt ,Σ) (Scenario 4). The results presented in this section were obtained considering the

exponential correlation function for the elements of R(φ). Similar results were obtained when specifying the wave

correlation function instead, and these results are presented in the supplementary material.

We generate 100 data-sets for each of the above scenarios, and after removing the data from location s6, the

following models were fit to each of them:

– Model A: Multivariate Student’s-t distribution model with anisotropic spatial correlation function (Proposed

model).
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– Model B: Multivariate Student’s-t distribution model with isotropic spatial correlation function.

– Model C: Multivariate normal distribution model with anisotropic spatial correlation function.

– Model D: Multivariate normal distribution model with isotropic spatial correlation function.

Note that the data from location s6 is considered missing, and their predictive distribution is obtained under each

of the above models for comparison.

To complete the models, we chose the following hyperparameters for the prior distributions in 2.1:

– σ2
di
∼ GI(1002,1002), i = 1,2.;

– aλ = 0.01 and bλ = 1, such that λ ∼U(0.01,1);

– aφ =−2log(0.05)/max(| si− s j |) and η = 1, such that φ ∼ G(3,1);

– aξ = aε = 2.01 and bξ = bε = 1.005;

– m0 = 0 and C0 = 1000I, such that β0 ∼ N(0,1000I);

– n0 = 2 and S0 = I15, such that H∼WI−1
n0

(S0).

Note that we use informative prior distributions for the σ2
d and φ parameters proposed by Schmidt and Gelfand

(2003); Morales et al. (2013). On the other hand, we use non-informative prior distributions for the β0 and H

parameters.

We sampled from the posterior distribution of the parameters through the MCMC algorithm described in Section

2.3, considering a sample of 10,000 iterations obtained after a burn-in of 50,000 iterations. Analysing the results

from the MCMC, for the most part the real values of the model parameters were included in the 95% credibility

intervals of their posterior distribution, showing that the estimation through MCMC was satisfactory.

After obtaining samples from the posterior distribution, we used the mean squared error to assess the accuracy

of the estimation of the model parameters. Table 2 presents the estimated mean squared error for the parameters

φ , κ , σ2, and ν obtained under models A, B, C, and D for each of the four scenarios. We observe that in most

scenarios, the estimated mean squared error for the parameters φ and κ obtained under the anisotropic models (A

and C) were lower than those obtained under the isotropic models (B and D). This result was obtained due to the

inclusion of the spatial deformation in the definition of the spatial correlation function, which helped explain the

spatial variability in the data.

The estimated mean squared error for parameters σ2 and ν were smaller under Model B than under Model A,

possibly due to the uncertainty included in estimating these parameters when including spatial deformation in the

model. This result is aggravated by the low number of locations in space, as increasing the number of monitoring

stations not only reduces the MSE of φ and κ but also leads to a reduction in the discrepancy between the MSE of

σ2 and ν between the t models (results obtained under Scenario 1 and a larger number of locations in space can be
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seen in the supplementary material). However, as it can be seen in Table 3, on average, the parameter ν was better

estimated under model A. Table 3 shows the quantiles of the posterior means of ν estimated for the 100 simulated

data-sets under models A and B.

Table 2 Estimated mean square error for the parameters φ , κ , σ2, and ν obtained under models A, B, C, and D for four different scenarios.

Scenario 1 (ν = 3) Scenario 2 (ν = 10)
Model φ κ σ2 ν φ κ σ2 ν

A 0.02 0.0004 0.31 0.31 0.04 0.0003 0.33 18.42
B 0.04 0.0088 0.09 0.22 0.05 0.0053 0.12 5.98
C 0.02 0.0009 0.34 0.03 0.0003 0.32
D 0.33 0.0490 0.12 0.04 0.0091 0.11

Scenario 3 (ν = 30) Scenario 4 (ν → ∞)
Model φ κ σ2 ν φ κ σ2 ν

A 0.04 0.0002 0.34 561.85 0.04 0.0002 0.34
B 0.05 0.0058 0.12 237.38 0.05 0.0059 0.12
C 0.04 0.0002 0.34 0.04 0.0002 0.33
D 0.05 0.0077 0.11 0.05 0.0068 0.11

Table 3 Q1, Q2, and Q3 are quantiles of the 100 estimates of the ν parameter obtained under models A and B. We used the mean posterior of
parameter ν as how to point estimator of parameter ν .

Scenario 1 (ν = 3) Scenario 2 (ν = 10)
Model Q1 Q2 Q3 Q1 Q2 Q3
A 2.8 3.0 3.4 10.3 12.7 14.2
B 2.7 2.9 3.2 7.2 8.5 9.3

Scenario 3 (ν = 30) Scenario 4 (ν → ∞)
Model Q1 Q2 Q3 Q1 Q2 Q3
A 29.7 43.7 58.3 73.7 86.1 94.7
B 11.9 16.0 18.4 18.6 24.9 35.8

We also performed tests to verify the goodness of fit of the models. To assess the goodness of fit for the multivariate

normal distribution models (C and D) we utilized a few tests that were implemented in the mvnTest package in R

by Pya et al. (2016), which were: Anderson-Darling (AD) (Paulson et al. 1987; Henze and Zirkler 1990), Cramer-

von Mises (CM) (Koziol 1982; Henze and Zirkler 1990), Doornik-Hansen (DH) (Doornik and Hansen 2008), and

Henze-Zirkler (HZ) (Henze and Zirkler 1990). These tests verify the assumption that the residuals obtained after

fitting the model follow a multivariate normal distribution (null hypothesis). It is important to notice that as the

data were simulated from a Student’s-t distribution under scenarios 1, 2, and 3, it would be desirable to detect a

lack of fit for these cases.

Table 4 shows how many times (in a total of 100) the null hypothesis was rejected when using each of the tests to

assess the goodness of fit of models C and D. Under scenario 1, which generated data further from the normal, it

was clear the lack of adequacy of both models as the tests rejected the null hypothesis 100% of the time. Under

scenario 2, the AD, CM, and HD tests were still able to reject the null hypothesis most of the time, while the

HZ test detected it 50% of the time under model C and 47% under model D. Under scenario 3, generated with
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ν = 30, the residuals behave mostly accordingly to a normal distribution, with the percentage of rejection being

just slightly over the percentage of rejection under scenario 4.

Table 4 Number of times (in a total of 100) that the null hypothesis was rejected when using the Anderson-Darling (AD), Cramer-von Mises
(CM), Doornik-Hansen (DH), and Henze-Zirkler (HZ) tests to assess the goodness of fit of models C and D.

Scenarios Model AD CM DH HZ
1 (ν = 3) C 100 100 100 100

D 100 100 100 100
2 (ν = 10) C 87 74 53 50

D 91 73 58 47
3 (ν = 30) C 8 4 12 14

D 6 3 17 11
4 (ν → ∞) C 7 6 4 7

D 8 7 6 7

To assess the goodness of fit for the multivariate Student’s-t distribution models (A and B), we used the test

proposed by McAssey (2013). This test verifies the assumption that the residuals obtained after fitting the model

follow a multivariate Student’s-t distribution. Table 5 shows how many times (in a total of 100) the null hypothesis

was rejected when using this test. The number of tests which had the null hypothesis rejected was relatively low

under scenarios 1, 2, and 3, with a higher percentage of rejection under scenario 4.

Table 5 Number of times (in a total of 100) that the null hypothesis was rejected when using the test proposed by McAssey (2013) to assess
the goodness of fit of models A and B.

Scenarios
Model 1 (ν = 3) 2 (ν = 10) 3 (ν = 30) 4 (ν → ∞)
A 3 2 4 14
B 3 3 10 17

To directly compare the models and verify which one performs better under different scenarios, we used the

Deviance information criterion (DIC) (Spiegelhalter et al. 2002) and the Log Pseudo-Marginal Likelihood (LPML)

criteria (Gelfand and Dey 1994). We used the Mean Absolute Deviation (MAD) and Measures of Predictive

Precision (MSE) criteria to measure the quality of the interpolation produced by the models comparing to the data

observed in s6. The MAD and MSE criteria are defined as follows:

MAD =
1
T

T

∑
t=1
|yt(s6)− ŷt(s6)|,

and

MSE =
1
T

T

∑
t=1

(yt(s6)− ŷt(s6))
2,

where ŷt(s6) is the estimate produced by the interpolation method (predictive mean).

Table 6 presents the quartiles of the DIC, LPML, MAD, and MSE criteria obtained from the 100 fits of the models.

When we analyze scenarios 1 and 2, we observe that using DIC and LPML criteria, the best model is Model A,
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with smaller values under the DIC and larger values under the LPML. The quality of prediction, however, is very

similar amongst the different models. The fact that the proposed model did not significantly improve the prediction

performance is probably due to the fact that the number of grid points used in the G region (15 locations) is large

enough for the predictive distribution at location s6 be well approximated by a normal distribution.

Table 6 Quantiles Qi, i = 1,2,3, of the DIC, LPML, MAS, and MSE criteria were obtained with the 100 fits for each of the models analyzed
for each of the studied scenarios.

Scenario 1 (ν = 3)
DIC LPML MAD MSE

Model Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
A 558 775 1000 -7.1 -5.9 -4.8 0.16 0.20 0.24 0.10 0.15 0.24
B 1081 1274 1461 -8.1 -7.4 -6.4 0.16 0.18 0.21 0.10 0.13 0.17
C 1069 1324 1598 -11.6 -10.2 -8.6 0.17 0.20 0.24 0.12 0.16 0.23
D 1681 1917 2121 -Inf -16.5 -11.7 0.16 0.18 0.20 0.09 0.13 0.17

Scenario 2 (ν = 10)
DIC LPML MAD MSE

Model Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
A 152 348 519 -4.6 -3.8 -2.8 0.14 0.17 0.20 0.05 0.08 0.11
B 635 796 914 -6.5 -5.6 -4.7 0.14 0.16 0.18 0.05 0.06 0.08
C 190 398 569 -5.5 -4.8 -3.7 0.14 0.18 0.20 0.05 0.08 0.11
D 790 947 1133 -35.3 -7.7 -6.4 0.14 0.16 0.18 0.05 0.06 0.08

Scenario 3 (ν = 30)
DIC LPML MAD MSE

Model Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
A 23 167 299 -3.4 -2.8 -2.1 0.14 0.16 0.20 0.04 0.07 0.09
B 468 590 710 -6.9 -5.3 -4.5 0.13 0.15 0.18 0.05 0.05 0.07
C 48 162 295 -4.0 -3.2 -2.5 0.14 0.16 0.20 0.04 0.06 0.10
D 586 732 847 -65.7 -10.8 -5.3 0.13 0.16 0.18 0.05 0.05 0.07

Scenario 4 (ν → ∞)
DIC LPML MAD MSE

Model Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
A -11 130 254 -3.4 -2.7 -2.1 0.13 0.17 0.19 0.04 0.06 0.08
B 397 540 630 -9.1 -5.4 -4.4 0.13 0.16 0.17 0.04 0.05 0.07
C -31 141 255 -3.7 -2.9 -2.2 0.13 0.16 0.20 0.04 0.07 0.09
D 536 663 769 -47.0 -10.5 -4.9 0.13 0.16 0.17 0.04 0.05 0.07

4 Application to evaporation data in Rio Grande do Sul, Brazil

In this section, we are interested in modeling the space-time variability of evaporation data from a Piche evap-

orimeter measured daily at 11 stations distributed in the state of Rio Grande do Sul, Brazil, in the years 2017

and 2018, for a total T =730 observations per monitoring station. The map with the monitoring stations is in

Figure 1. This dataset is collected by the National Institute of Meteorology and can be accessed at the website

https://portal.inmet.gov.br/.

Exploratory analysis of the evaporation time series (see Figure 8 in Appendix A) show some atypical values,

which can be an indication that the process under investigation is generated by a distribution with heavy tails. We

also compared the variance of the observations for each period of time (representing the variability in space) and

https://portal.inmet.gov.br/
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Fig. 1 Map of the state of Rio Grande do Sul (G space), located in the south of Brazil, and the location of the 11 monitoring stations in G.

the variance of the observations for each location in space (representing the variability in time). Figure 2 shows

the boxplot of the variances over time and space. It is essential to notice that even though the variability is usually

higher in time, there are a few atypically high space variabilities. Such high variability in space indicates the need

to consider a heavy tailed distribution to handle the spatial variability in the data.

variability in space variability in time

0
5

1
0

1
5

2
0

2
5

Fig. 2 Boxplot of the variances calculated for each period of time - space variability (left) and boxplot of the variances calculated for each
location in space - time variability (right) .

The heterogenic topography of the region under study, as well as the climatic variations produced by the geo-

graphical location (south latitude) and the cold fronts coming from the south pole (Reboita et al. 2010) are an

indication that the hypothesis of isotropy would not be reasonable for the evaporation process. Figure 3 presents

the directional sample variogram at 0o,45o,90o and 135o of the residuals after removing a temporal trend. This
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Figure shows that even though the nugget effect is similar at all directions (it is high for all), the range vary (at 135o

is smaller than at 0o and 90o) and the sill also vary (at 90o being larger and at 45o being smaller). It is interesting

to point out that at 45o is it not possible to notice spatial dependence.

distance

s
e
m

iv
a
ri

a
n
c
e

1

2

3

0.5 1.0 1.5 2.0 2.5

0 45

90

0.5 1.0 1.5 2.0 2.5

1

2

3

135

Fig. 3 Directional sample variogram at 0o,45o,90o and 135o of the residuals after removing a temporal trend.

This analysis confirms that the hypothesis of isotropy does not seem appropriate to handle the spatial dependency

in the observations. This way, we model this dataset through the spatial-temporal model proposed in Section

2, considering the following covariates to explain the mean of the process: Latitude (denoted by xi); Longitude

(denoted by yi); Altitude (denoted by zi) and the iterations between xi, yi, and zi. We also incorporate an annual

and semiannual seasonal in the specification of Gt . That is, the state space model is defined with the covariate

vector Fti = (1 xi yi zi xiyi xizi yizi xiyizi 1 0 1 0), for i = 1, . . . ,11, and the transition matrix Gt =

 I8 08×4

04×8 G3

 ,

where G1 =

 cos(ω) sin(ω)

−sin(ω) cos(ω)

 , G2 =

 cos(2ω) sin(2ω)

−sin(2ω) cos(2ω)

 , G3 = diag(G1,G2), ω = 2π/365. Note that

G1 and G2 incorporate sines and cosines in the evolution matrix Gt to model cycles attributed to the seasons of

the year and semiannual rainfall regime (summer and winter rains), respectively.

Besides the proposed model in Section 2, which we will refer to as Model A, we also estimated for comparison an

isotropic version of this model (Model B), and Gaussian versions either considering spatial deformation (Model
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C) or isotropy (Model D). These models are summarized bellow:

Model A : Wt ∼ tn(0,Σ),Σi j = σ
2[(1−κ)

φ sin(| di−d j | /φ)

| di−d j |
+κ],

Model B : Wt ∼ tn(0,Σ),Σi j = σ
2[(1−κ)

φ sin(| si− s j | /φ)

| si− s j |
+κ],

Model C : Wt ∼ Nn(0,Σ),Σi j = σ
2[(1−κ)

φ sin(| di−d j | /φ)

| di−d j |
+κ],

Model D : Wt ∼ Nn(0,Σ),Σi j = σ
2[(1−κ)

φ sin(| si− s j | /φ)

| si− s j |
+κ].

As can be seen, we opted to work with the wave correlation function for this application by the specifications

above. Similar results were obtained when working with the exponential correlation function instead, and these

results we present in the supplementary material.

We assume a priori that φ ∼G(aφ ,η) with aφ =−2log(0.05)/max(| si− s j |) = 0.19 and η = 1, so that the mean

is equal to aφ and the spatial correlation function has a smooth decay Schmidt and Gelfand (2003); Morales et al.

(2013). As we expect a soft deformation of the original space a priori, we define an informative prior distribution

for the parameter σ2
d , that is, σ2

di
∼GI(1000,100), i = 1,2 (Morales et al. 2013). For λ we specified λ ∼U( 1

50 ,
1
3 )

so that 3 < E(ν | λ ) < 50 a priori. Finally, we present the following uninformative prior distributions for the β0

and H parameters: β0 ∼ N(0,1000I) and H∼WI−1
2 (I).

We sampled from the posterior distribution of the parameters through the MCMC algorithm described in Section

2.3, considering a sample of 10,000 iterations obtained after a burn-in of 100,000 iterations. To verify the conver-

gence of the MCMC we run two chains starting from different initial values, for each model. We used the Gelman

and Rubin’s criteria (Gelman and Rubin 1992; Plummer et al. 2006) to verify convergence.

Table 7 presents descriptive statistics of the posterior samples from the parameters σ2, σ2
ε , σ2

ξ
, φ , κ, and ν under

each one of the adjusted models. The results show that Model A is the best when the models are compared

through the DIC criteria. Through the LPML criteria, Models A, B and C presented similar results, with Model C

showing a slight advantage. If we compare the t models (Models A and B) we observed that there is no significant

difference in the estimation of parameters σ2 and ν . However, the estimates of φ and κ produced by Model A

are smaller when compared to Model B. In this case, the value of κ = 0.44 estimated under Model A, shows

that 44% of the variability of the covariance structure is explained by the nugget effect against 81% under Model

B. This result suggests that the improvement obtained with the increase in the percentage of the explanation of

the variability of the structure of the covariance of to the spatial component is due to spatial deformation (see

Figure 4). On the other hand, when comparing the Gaussian models (Models C and D) we observe significant

difference in the estimated values for κ and φ . In this case, the variability of the covariance structure explained

by the nugget effect is 28% under Model C against 72% under Model D. This indicates that the inclusion of

spatial deformation increases significantly the percentage of explanation of the variability of the covariance of
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to the spatial component. To compare the goodness of fit of the models we performed residual analysis and

construct Q-q plots with 95% confidence intervals. Figure 5 shows the residuals estimated under Models A and

C for the monitoring station s1 as well as the Q-q plots of the Student’s-t and Normal distributions (respectively)

with simulated confidence envelopes (95%) for the estimated residuals under these models. Similar results were

obtained with other monitoring stations. This analysis shows that Model A have a better fit than Model C, with the

residuals under model A following inside the Q-q plot confidence intervals. Similar results were obtained under

models B and D, meaning the Student’s-t models present a better fit then the Gaussian models.

In Figure 6, we present the estimated surface (posterior mean) and the amplitude of the 95% credibility intervals

at time t = 160 under model A (proposed model). The Figure suggests that, on average, higher Piche evaporation

levels are obtained in the north-east of the studied region, and, as one would expect, the credibility intervals have

smaller amplitude in the center of the map, where the observations were made.

Table 7 Posterior mode, mean, median, and 95 % credibility interval for the parameters σ2, σ2
ε , σ2

ξ
, φ ,κ, and ν of the models adjusted for

evaporation data in the states of Rio Grande do Sul in Brazil.

Model A Model B
Parameter Mean Median 2.5% 97.5% SD Mean Median 2.5% 97.5% SD

σ 2 0.63 0.63 0.58 0.69 0.03 0.62 0.62 0.57 0.69 0.03
σ 2

ε 0.27 0.27 0.25 0.30 0.01 0.50 0.50 0.47 0.54 0.02
σ 2

ξ
0.35 0.35 0.31 0.40 0.02 0.12 0.12 0.08 0.15 0.02

φ 0.63 0.63 0.60 0.66 0.03 4.95 4.82 2.99 7.88 1.24
κ 0.44 0.44 0.40 0.47 0.02 0.81 0.81 0.76 0.86 0.03
ν 4.07 4.06 3.56 4.65 0.28 4.04 4.04 3.47 4.69 0.31

DIC 2809 3237
LPML -18 -19

Model C Model D
Parameter Mean Median 2.5% 97.5% SD Mean Median 2.5% 97.5% SD

σ 2 1.25 1.25 1.17 1.32 0.04 1.31 1.28 1.12 1.64 0.14
σ 2

ε 0.35 0.34 0.31 0.40 0.02 0.94 0.94 0.90 0.99 0.02
σ 2

ξ
0.90 0.91 0.80 0.98 0.05 0.37 0.34 0.27 0.70 0.13

φ 0.56 0.56 0.54 0.60 0.01 6.18 5.97 3.38 10.02 1.70
κ 0.28 0.27 0.24 0.33 0.02 0.72 0.74 0.58 0.84 0.07

DIC 10357 12245
LPML -17 -24

Finally, to study the predictive performance of our models, they were fit removing one of the stations at a time,

and then the observations in the station that was removed are predicted through time and compared to the real

observations. Table 8 shows the percentage of coverage of the observations of the station left-out, in the 95%

confidence envelopes under models A, B, C and D. Figure 7 shows the observations made at monitoring station s6

through time and the simulated 95% confidence envelopes under the proposed model (model A). Similar results

were obtained for the other monitoring stations. The Figure shows that the predictions seem reasonable under the

proposed model with most of the real values following inside the credibility intervals.

In conclusion, the results suggest a significant gain in modeling of evaporation when we relax the assumption that

the observations come from an isotropic Gaussian process, and assume an anisotropic Student’s-t distribution for

the process of interest.
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Fig. 4 Estimated deformed map of the state of Rio Grande do Sul (D space), under model A (proposed model)

Table 8 Percentage of coverage of the observations of the station left-out in the 95% confidence envelopes under models A, B, C and D.

Station left-out Model A Model B Model C Model D
s1 0.97 0.97 0.96 0.97
s2 0.54 0.68 0.50 0.74
s3 0.65 0.61 0.56 0.65
s4 0.67 0.69 0.64 0.67
s5 0.68 0.71 0.68 0.73
s6 0.97 0.92 0.89 0.51
s7 0.79 0.95 0.97 0.94
s8 0.90 0.90 0.89 0.90
s9 0.91 0.76 0.80 0.75

s10 0.98 0.90 0.88 0.88
s11 0.93 0.87 0.93 0.88
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Fig. 5 a) Residuals estimated under Model A for the monitoring station s1. b) Q-q plot of the Student’s-t distribution with simulated confidence
envelopes (95%) for the estimated residual under Model A. c) Residuals estimated under Model C for the monitoring station s1. d) Q-q plot of
the normal distribution with simulated confidence envelopes (95%) for the estimated residual under Model C.
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Fig. 6 a) Estimated surface (posterior mean) at t=160, b) Amplitude of the 95 % credibility intervals for evaporation in the state of Rio Grande
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0 200 400 600

−
1
0

0
1
0

2
0

3
0

4
0

Time

y
t

0 200 400 600

−
1
0

0
1
0

2
0

3
0

4
0

 

 

 

Fig. 7 Observations made at s6 through time (black line) and simulated 95% confidence envelopes (gray areas) under model A (proposed
model).
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5 Conclusions

In this paper, we propose a spatiotemporal model to deal with environmental data that contain outliers. Our model

also allows us to treat situations in which it is not reasonable to assume that the covariance structure is isotropic.

Data of this kind are not uncommon when observing environmental processes. We propose a Student’s-t spatial

model in which the mean process incorporates time variation through a state space approach (West and Harrison

1997) and the spatial correlation function incorporates anisotropy via spatial deformation (Sampson and Guttorp

1992). The estimation of the parameters of the proposed model is performed from a Bayesian perspective through

MCMC methods.

The algorithm is validated through a simulation exercise. In this simulated study we also compare the performance

of the proposed Student’s-t anisotropic model (Model A), with three alternative models: a Student’s-t isotropic

model (Model B), a Gaussian anisotropic model (Model C) and a Gaussian isotropic model (Model D). The

proposed model (Model A) performed better than the others according to the DIC and LPML criteria, specially

when simulating from a Student’s-t process with a small number of degrees of freedom.

The proposed model is applied to an evaporation dataset collected at 11 stations distributed in the state of Rio

Grande do Sul, Brazil. For comparison we also fit Models B, C and D to this dataset. We used the DIC and LPML

criteria to compare the models and concluded that overall Model A is the one with the best performance.

To study the predictive performance of our models, models A, B, C and D were fit, removing one of the stations at

a time, and then the observations in the station that was removed were predicted through time and compared to the

real observations. All four models showed reasonable predictions, with the Student’s-t models A and B presenting

larger 95% credibility intervals. These larger intervals guarantee a higher percentage of the real observations inside

the intervals, showing a better performance of the Student’s-t models.

As a future line of work, we could extend the proposed model to handle temporal and spatial variations jointly

instead of having independent spatial processes over time. A possible approach is to work with a sequence of

intensity surfaces (varying in space) linked through time, as in Gelfand et al. (2005) and Reis et al. (2013).

We would also like to explore other approaches for heavy tailed distributions with atypical observations, such as the

family of elliptical distributions proposed by De Bastiani et al. (2015). Recently, De Bastiani et al. (2015) proposed

a family of elliptical distributions to model spatial covariance structures in order to minimize the influence of

atypical data on maximum likelihood estimates. This family of elliptical distributions is also a great alternative

to model heavy tailed processes. One important feature of this family is that it incorporates some interesting

distributions, such as: Normal, Student’s-t, generalized t, and contaminated normal, among others.

Another interesting comparison could be made between our approach to anisotropy and other approaches, such as

the one proposed by Haskard et al. (2007), where the autors generalize the Mátern family to allow for anisotropy.
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A Appendix
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Fig. 8 Evaporation time series observed in each monitoring station.
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