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It can be argued that optimal prediction should take into account all available data. Therefore, to evalu-
ate a prediction interval’s performance one should employ conditional coverage probability, conditioning
on all available observations. Focusing on a linear model, we derive the asymptotic distribution of the
difference between the conditional coverage probability of a nominal prediction interval and the condi-
tional coverage probability of a prediction interval obtained via a residual-based bootstrap. Applying this
result, we show that a prediction interval generated by the residual-based bootstrap has approximately
50% probability to yield conditional under-coverage. We then develop a new bootstrap algorithm that
generates a prediction interval that asymptotically controls both the conditional coverage probability as
well as the possibility of conditional under-coverage. We complement the asymptotic results with several
finite-sample simulations.
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1. Introduction

Statistical inference comes in two flavors: explaining the world and predicting the future state of the
world. To explain the world based on data, statisticians create models like linear regression and use
data to fit the models. After doing that, they will gauge the goodness-of-fit, and assess the accuracy of
estimation, e.g., via confidence intervals of the fitted model. Focusing on regression, the literature is
huge; to pick 3-4 papers, see Shao [35] on model selection, Xie and Huang [46] or Liu and Yu [22] on
model fitting, and Freedman [12] on statistical analysis.

Prediction is not a new topic in statistical inference; we refer to Geisser [13] for a comprehensive
introduction, or Politis [28] for a more recent exposition. Notably, prediction has seen a resurgence
in the 21st century with the advent of statistical learning; see Hastie et al. [15] for an introduction.
Similarly to the aforementioned linear model procedure, statisticians use data to fit a model that can
yield a predictor for future observations, and use prediction intervals to quantify uncertainty in the
prediction; see e.g. Romano et al. [31] and Wang and Politis [45]. Under a regression setting, there are
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several ways to construct a prediction interval. The classical prediction interval was typically obtained
under a Gaussian assumption on the errors; see Section 2 in that follows. One of the earliest methods
foregoing the restrictive normality assumption employed the residual-based bootstrap; see Stine [38]
and the references therein. More recent methods include the Model-free (MF) bootstrap and the hybrid
Model-free/Model-based (MF/MB) bootstrap of Politis [28].

For all bootstrap methods, the aim is to provide an asymptotically valid prediction interval. Suppose
Γ is a prediction interval for the future observation Y f . If Prob(Y f ∈ Γ ) ≈ 1−α (where ≈ indicates
an asymptotic approximation), then Γ is an asymptotically valid 1−α prediction interval for Y f . On
the other hand, if we wish to ensure that Prob(Y f ∈ Γ ) ⩾ 1−α , i.e., an unconditional lower-bound
guarantee, then we may apply the conformal prediction idea of Shafer and Vovk [34] and Vovk et al.
[43], which has been applied to several complex models, including non-parametric regression; see Lei
and Wasserman [20], Lei et al. [19], Romano et al. [31], and Sesia and Candès [33].

In the paper at hand, we assume a linear model and discuss how to construct an asymptotically valid
prediction interval in the context of conditional coverage that also possesses some unconditional guar-
antees as discussed above. To be more concrete, suppose we have an n× p design matrix X , indepen-
dent and identically distributed residuals ε = (ε1, ...,εn)

T , dependent variables Y = (Y1, ...,Yn)
T where

Y =X β +ε and a fixed new regressor(a vector) X f that is of interest. We would like to provide a 1−α

prediction interval Γ = Γ (X ,Y ,X f ) for the future observation Y f = X T
f β + ξ ; here ξ is indepen-

dent of X ,Y and has the same distribution as ε1. The aforementioned bootstrap methods will ensure
that Prob

(
Y f ∈ Γ

)
≈ 1−α , but without a lower-bound guarantee. On the other hand, the conformal

prediction(e.g., Chernozhukov et al. [9]) method yields an interval Γ such that Prob
(
Y f ∈ Γ

)
⩾ 1−α ,

i.e., an unconditional lower-bound guarantee. However, we are more interested in quantifying the per-
formance of a prediction interval in terms of its conditional coverage probability Prob

(
Y f ∈ Γ |Y

)
(or

Prob
(
Y f ∈ Γ |Y ,X f ,X

)
under random design).

The reason for our interest comes from two aspects. On one hand, the conditional probability pre-
cisely describes how statisticians make prediction in practice. By using the unconditional probability

Prob
(
Y f ∈ Γ

)
= E

(
Prob

(
Y f ∈ Γ |Y

))
(1.1)

it is as if we assume that the statistician has not observed Y before making the prediction.
Realistically, however, statisticians have observed Y and have fitted the model before they make

predictions. Therefore, it is informative to understand what happens to Y f given our knowledge of all
data (including Y ) rather than “on average” among all possible Y .

On the other hand, according to eq. (1.1), analysis of the conditional probability is a more funda-
mental topic than the unconditional one. For example, if for any given δ > 0,
Prob

(
{|Prob

(
Y f ∈ Γ |Y

)
− (1−α)|> δ}

)
→ 0 as n→∞, then we can take the conditional expectation

and have

|Prob
(
Y f ∈ Γ

)
− (1−α)|⩽ E

(
|Prob

(
Y f ∈ Γ |Y

)
− (1−α)|

)
⩽ δ +Prob

(
{|Prob

(
Y f ∈ Γ |Y

)
− (1−α)|> δ}

) (1.2)

which implies Prob
(
Y f ∈ Γ

)
→ 1−α .

Consequently, the aforementioned performance goals of asymptotic validity and lower bound guar-
antee should be recast in terms of conditional coverage. Note, however, that Prob

(
Y f ∈ Γ |Y

)
is a

random variable itself – see e.g. definition 1.3 in Çinlar [7]. Hence, the performance goals are now
stochastic, i.e., Prob

(
Y f ∈ Γ |Y

)
→p 1−α and Prob

(
Y f ∈ Γ |Y

)
⩾ 1−α with a specific probability.

Surprisingly, we can achieve these goals simultaneously through a careful re-design of our prediction
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intervals. Definition 1.2 in what follows describes our new performance aim. Before stating it, however,
we need to clarify our notation since our results hold true for both fixed and random design. In the
latter case, however, all probabilities and expectations will be understood as being conditional on X ;
see Definition 1.1 below.

DEFINITION 1.1 Consider the two cases:
(a) Fixed design, i.e., there is no randomness involved in the design matrix X and the new regressor
X f . In this case, we define P(·) = Prob(·), P∗(·) = Prob(·|Y ), E·= E·, and E∗·= E(·|Y ).
(b) Random design, i.e., there is randomness involved in the design matrix X (and possibly in the
new regressor X f as well). In this case, we define P(·) = Prob(·|X ,X f ), P∗(·) = Prob(·|Y ,X ,X f ),
E· = E(·|X ,X f ), and E∗· = E(·|Y ,X ,X f ). Furthermore, convergences and probability statements
will be understood to hold almost surely in X and X f .

We can now state our new performance aims in general.

DEFINITION 1.2 (Prediction interval with unconditional guarantee) Assume an n× p design matrix X ,
independent and identically distributed (i.i.d.) residuals ε = (ε1, ...,εn)

T ∈ Rn, and that the dependent
variables Y satisfy a linear model Y = X β + ε . For a new regressor X f ∈ Rp and a potential future
observation Y f , we say that Γ =Γ (X ,Y ,X f ) is the 1−α prediction interval with 1−γ unconditional
guarantee if the following conditions hold true:

1. For any given δ > 0,

P
(
{|P∗ (Y f ∈ Γ

)
− (1−α)|> δ}

)
→ 0 (1.3)

2.
P
(
{P∗(Y f ∈ Γ )⩾ 1−α}

)
→ 1− γ (1.4)

as n→∞; here, α,γ are constants in (0,1). We call 1−α the nominal (conditional) coverage probability
and 1− γ the guarantee level.

Intuitively, Definition 1.2 requires the prediction interval Γ to have an asymptotically correct condi-
tional coverage probability 1−α . Meanwhile, the hope is that Γ ’s conditional coverage probability is
greater than 1−α with a specific (unconditional) probability.

REMARK 1.1 In Definition 1.2, the validity condition (eq.(1.3)) is ubiquitous and easily understood,
but the second condition (eq.(1.4)) needs some clarifications. This remark aims to stress that the second
condition is not redundant.

Suppose a prediction interval Γ satisfies (1.3) with 1 − α = 95%. If the sample size n is very
large, then Γ ’s conditional coverage probability is close to 95%. In this situation, whether or not the
conditional coverage probability is greater than 95% is not important. However, if the sample size
is merely moderate, then Γ ’s conditional coverage probability can be significantly smaller than 95%.
Indeed, in table 2 and 3(in section 6), a nominal 95% prediction interval may have a conditional coverage
probability less than 91%.

In addition suppose Γ satisfies (1.4) with 1− γ = 85%. When the sample size is moderate, the
guarantee level may also be smaller than 85%. However, this condition still gives us an extra assurance
that Γ is ‘not likely’ to have an under-coverage issue. Moreover, it is even unlikely for Γ ’s conditional
coverage probability to be far less than 95%.

Notably, statisticians have already noticed a gap between theoretical validity and finite sample per-
formance. That is, an asymptotic valid prediction interval(e.g., Stine [38]) will often manifest under-
coverage in practice; see Politis [27] for a discussion. In order to fill this gap, Politis [28] proposed
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the definition of a ‘pertinent prediction interval’, which is a notion stronger than (1.3). Definition 1.2
provides a new perspective on this problem.

REMARK 1.2 (Further discussion on eq. (1.4)) A drawback of eq. (1.3) is that it takes place asymptoti-
cally (as the sample size n → ∞). Hence, a prediction interval may satisfy (1.3) with a given δ > 0, but
for a given sample size n, the probability of the event {|P∗ (Y f ∈ Γ

)
− (1−α)|> δ} may not be negli-

gible. If the event {|P∗ (Y f ∈ Γ
)
−(1−α)|> δ} is to happen, we may prefer P∗ (Y f ∈ Γ

)
> 1−α +δ

(i.e., overcoverage) to P∗ (Y f ∈ Γ
)
< 1−α −δ (i.e., undercoverage). Eq.(1.4) reflects the intensity of

this preference, i.e., overcoverage is more likely to happen if we choose large 1−γ . Notably, we require
(1.3) and (1.4) to happen simultaneously. Therefore, (1.4) calibrates the usual prediction interval—e.g.,
the prediction interval generated by the residual-based bootstrap [38]—instead of creating a new one.

REMARK 1.3 This remark compares definition 1.2 with classical bootstrap methods and conformal
predictions. Recall bootstrap methods always require P(Y f ∈ Γ )→ 1−α like Stine [38], or P∗(Y f ∈
Γ ) →p 1−α like Politis [28]. On the other hand, conformal prediction is considered a model-free,
non-asymptotic method to generate a prediction interval. But its guarantee is on average over the
observations and over the future random regressor X f . In table 1, it appears that the guarantee level
of a conformal prediction is only 10.2% even when the sample size is 1600, implying that in 89.8% of
the samples we have conditional coverage probability less than 1−α . The new regressor X f is fixed
(or conditioned upon) in our paper, so a complete model-free procedure (i.e., a procedure that constructs
a consistent prediction interval for any models) is impossible; see Barber et al. [2].

In order to increase the guarantee level, Vovk [42] introduced the idea of a tolerance region; Vovk’s
tolerance region is constructed as follows. First, perform the split-conformal prediction introduced in
Lei et al. [19] to make the 1−α prediction interval C1−α(X f ) for Y f . Denote ncalib the size of the
calibration set (i.e., I2 in algorithm 2 of Lei et al. [19]). Then choose α ′ such that

γ ⩾ binomncalib,α(⌊α
′(ncalib +1)−1⌋) (1.5)

where binomn,α denotes the cumulative distribution function of a binominal distribution with size n
and probability α , and ⌊x⌋ denotes the largest integer that is smaller than or equal to x. Then Vovk’s
tolerance region is defined as C1−α ′(X f ). According to proposition 2b in Vovk [42], this prediction
interval satisfies

P(P∗(Y f ∈C1−α ′(X f ))⩾ 1−α)⩾ 1− γ (1.6)

which is similar to condition (1.4). However, Vovk’s tolerance region might not satisfy (1.3); that is why
(1.5) is an inequality rather than an equality. In section 6, we compare several prediction methods via
finite-sample simulations; it looks like Vovk’s tolerance region is typically wider than other prediction
intervals.

Table 1 shows that this tolerance region has high guarantee levels among various linear models.
Definition 1.2 still follows a bootstrap framework but additionally requires P∗(Y f ∈ Γ )⩾ 1−α for

a specific proportion of observations. This definition is useful for understanding an existing bootstrap
algorithm, like corollary 4.1. It also maintains the balance between Γ ’s length and its possibility of
under-coverage.

Definition 1.2 is not easy to achieve; to see why, we present a simulation in table 1. The guarantee
level(i.e., proportion of observations having conditional coverage probability ⩾ 1−α) of the aforemen-
tioned methods are not very high.

Our paper has two main contributions. On the one hand, it derives the Gaussian approximation for
the difference between the conditional probability of a nominal prediction interval and the conditional
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Table 1. Quantiles of conditional coverage probabilities and guarantee levels of prediction intervals on the Experiment model
(see section 6). The errors are generated by i.i.d. normal random variables with mean 0 and variance 1. The nominal coverage
probability is 95%. We use the R-package maintained by Tibshirani et al. [40] to perform conformal predictions. For Vovk’s
tolerance region, we chose γ = 15% in (1.5).

Sample size Algorithm Quantiles of coverage probabilities Guarantee level
15% 30% 50%

100 Residual bootstrap 91.0% 92.5% 93.9% 31.3%
MF/MB bootstrap 93.5% 94.7% 95.8% 66.7%
Conformal prediction 90.0% 91.8% 93.5% 27.9%
Split conformal prediction 95.2% 96.7% 97.8% 87.0%
Jackknife conformal prediction 92.7% 95.3% 97.2% 56.5%
Vovk’s tolerance region 97.3% 98.4% 99.2% 95.5%

400 Residual bootstrap 93.3% 94.0% 94.7% 40.8%
MF/MB bootstrap 93.8% 94.6% 95.2% 56.3%
Conformal prediction 91.9% 92.7% 93.6% 15.5%
Split conformal prediction 93.9% 94.8% 95.6% 66.4%
Jackknife conformal prediction 93.8% 95.0% 96.2% 52.6%
Vovk’s tolerance region 96.1% 96.8% 97.5% 95.2%

1600 Residual bootstrap 94.0% 94.5% 95.0% 48.0%
MF/MB bootstrap 94.2% 94.6% 95.0% 52.8%
Conformal prediction 92.0% 92.7% 93.4% 10.2%
Split conformal prediction 94.0% 94.6% 95.2% 57.7%
Jackknife conformal prediction 93.0% 93.6% 94.3% 25.5%
Vovk’s tolerance region 94.8% 95.3% 95.9% 81.3%

probability of a prediction interval based on residual-based bootstrap. In practice, bootstrap approxi-
mates the former by the latter, and the non-zero difference will make the former deviate from 1−α .
This leads to the fact that the residual-based bootstrap algorithm asymptotically has guarantee level of
50%. On the other hand, we develop a new method to construct a prediction interval satisfying definition
1.2 with arbitrarily chosen α,γ .

We employ a simple example to illustrate why a classical prediction interval becomes problematic
under the conditional coverage context in section 2. After that, we introduce the frequently used nota-
tions and assumptions in section 3. In section 4, we derive the Gaussian approximation result. In section
5, we develop the algorithm to construct the newly proposed prediction interval. We perform some sim-
ulations to illustrate the proposed algorithm’s finite sample performance in section 6, and provide some
conclusions in section 7. The proofs of the theoretical results will be deferred to the online supplement
[49].

2. An intuitive illustration in the Gaussian case

For the sake of illustration, in this section only we suppose the residual ε1 has a normal distribution
with mean 0 and known variance σ2. Assume X T X is invertible. Denote Φ(x) as the cumulative
distribution function of the standard normal distribution and Φ−1(α),α ∈ (0,1) as its α−quantile, i.e.,
Φ(Φ−1(α)) = α . Adopt the notations P,P∗ in definition 1.1. If we do not care about the conditional
coverage, we can define β̂ = (X T X )−1X T Y and use the normal distribution 1−α prediction interval

P1 = [X T
f β̂ +σΦ−1(α

2 )
√

1+X T
f (X T X )−1X f , X T

f β̂ +σΦ−1(1− α

2 )
√

1+X T
f (X T X )−1X f ]

for the future response Y f . Since the random variable Y f −X T
f β̂ has normal distribution with mean 0
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and variance σ2(1+X T
f (X T X )−1X f ), it follows that

P
(
Y f ∈ P1

)
= P

Φ
−1(

α

2
)⩽

Y f −X T
f β̂

σ

√
1+X T

f (X T X )−1X f

⩽ Φ
−1(1− α

2
)

= 1−α. (2.1)

In other words, P1 has precise unconditional coverage probability. However, if we take the condi-
tional coverage into consideration, the random variable Y f −X T

f β̂ |Y (or Y f −X T
f β̂ |Y ,X f ,X under

random design) has normal distribution with mean X T
f β −X T

f (X T X )−1X T Y and variance σ2.
According to Taylor’s theorem,

P∗ (Y f ∈ P1
)
= P∗

Φ
−1(

α

2
)⩽

Y f −X T
f β̂

σ ×
√

1+X T
f (X T X )−1X f

⩽ Φ
−1(1− α

2
)


= Φ

(√
1+X T

f (X T X )−1X f ×Φ
−1(1− α

2
)+

X T
f (X T X )−1X T ε

σ

)

−Φ

(√
1+X T

f (X T X )−1X f ×Φ
−1(

α

2
)+

X T
f (X T X )−1X T ε

σ

)
≈ 1−α +Φ

′
(Φ−1(1− α

2
))×X T

f (X T X )−1X f ×Φ
−1(1− α

2
)

+Φ
′′
(Φ−1(1− α

2
))× (

X T
f (X T X )−1X T ε

σ
)2

(2.2)

The last line of (2.2) is derived by expanding the second line on Φ−1(1− α

2 ), and expanding the third line

on Φ−1(α

2 ). Since Φ
′′
(Φ−1(1− α

2 ))< 0,
(X T

f (X T X )−1X T ε)2

σ2(X T
f (X T X )−1X f )

has χ2
1 distribution and Φ

′′
(x) =−xΦ

′
(x)

for any x,

P
(
{P∗ (Y f ∈ P1

)
⩾ 1−α}

)
≈ P

(
(X T

f (X T X )−1X T ε)2

σ2X T
f (X T X )−1X f

⩽
Φ

′
(Φ−1(1− α

2 ))×Φ−1(1− α

2 )

−Φ
′′
(Φ−1(1− α

2 ))

)
(2.3)

which approximately equals 0.683. Therefore, the prediction interval P1 has about 68% guarantee
level.

However, it is possible to find a prediction interval with a desired guarantee level, say 1− γ . Wallis
[44], Lieberman and Miller [21] and De Gryze et al. [10] considered this problem and defined the
‘tolerance interval’ that controlled the guarantee level. However, their work assumed that the residuals
ε1 had normal distribution. Moreover, an 1− γ tolerance interval does not ensure having asymptotic
coverage probability 1−α . We define C1−γ as the 1− γ quantile of a χ2

1 distribution, and let c1−γ =

−Φ
′′
(Φ−1(1− α

2 ))X
T
f (X T X )−1X f ×C1−γ / (2Φ

′
(Φ−1(1− α

2 )))> 0. We construct the prediction
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interval P2 = [X T
f β̂ +σ ×(Φ−1(α

2 )−c1−γ), X T
f β̂ +σ ×(Φ−1(1− α

2 )+c1−γ)]. We can now compute

P∗ (Y f ∈ P2
)
= P∗

(
Φ

−1
(

α

2

)
− c1−γ ⩽

Y f −X T
f β̂

σ
⩽ Φ

−1
(

1− α

2

)
+ c1−γ

)

= Φ

(
Φ

−1
(

1− α

2

)
+ c1−γ +

X T
f (X T X )−1X T ε

σ

)
−Φ

(
Φ

−1
(

α

2

)
− c1−γ +

X T
f (X T X )−1X T ε

σ

)

≈ 1−α +2Φ
′
(

Φ
−1
(

1− α

2

))
× c1−γ +Φ

′′
(

Φ
−1
(

1− α

2

))
× (

X T
f (X T X )−1X T ε

σ
)2

which implies that P
(
{P∗ (Y f ∈ P2

)
⩾ 1−α}

)
≈ P

(
−Φ

′′
(

Φ
−1
(

1− α

2

)) (X T
f (X T X )−1X T ε)2

σ2 ×X T
f (X T X )−1X f

⩽−Φ
′′
(Φ−1(1− α

2
))×C1−γ

)
= 1− γ

(2.4)
Hence, prediction interval P2 has guarantee level about 1− γ . Note that since c1−γ has order O(1/n),
this correction does not significantly enlarge the width of the prediction interval. In other words, if
the dimension of the parameter vector is fixed, then the uncorrected and the corrected prediction
intervals coincide with each other asymptotically.

In the end of this section, we would like to briefly discuss the prediction problem under the high
dimensional setting, i.e., p/n → s ∈ (0,1). Bates et al. [3] and Dobriban and Wager [11] also considered
this problem but they focused on estimating the prediction error. Steinberger and Leeb [37] and Zhang
and Politis [48] constructed asymptotically valid prediction intervals for a (sparse) high dimensional
linear model. Suppose ∃ 0 < c ⩽ C < ∞ such that all eigenvalues of 1

nX T X is greater than c and
smaller than C. This assumption is achievable according to Bai and Yin [1]. If p is large and the new

regressor X f is not sparse, then the term X T
f (X T X )−1X f ⩾

X T
f X f
Cn , which does not tend to 0 as

n → ∞. Therefore, despite that
Y f −X T

f β̂

σ

√
1+X T

f (X T X )−1X f
has normal distribution(so (2.1) is satisfied), we

cannot use Taylor expansion in (2.2) and (2.4). So we need a new method to construct a prediction
interval in order to satisfy Definition 1.2. Moreover, c1−γ will not converge to 0 as n → ∞, and

Φ
−1(1− α

2
)+ c1−γ −Φ

−1(1− α

2
)
√

1+X T
f (X T X )−1X f

= Φ
−1(1− α

2
)X T

f (X T X )−1X f ×

C1−γ

2
− 1

1+
√

1+X T
f (X T X )−1X f

 (2.5)

which does not converge to 0 as the sample size n → ∞. So modification (2.4) will not be negligible
asymptotically, and the prediction intervals (2.2) and (2.4) will not be close to each other even when n
is large. In other words, constructing a ‘good’ prediction interval(e.g., a prediction interval satisfying
definition 1.2) can be a challenging problem if the dimension of parameters is large. This paper will
focus on the finite dimensional situation. However, our work should lay a good foundation for the high
dimensional prediction problem.

Another limitation in this section is that the marginal distribution of the errors is assumed to be nor-
mal with known variance σ2, which is always not true. In the general situation, the marginal distribution
of the errors is not normal and is unknown. As a consequence, the correction can be significantly larger
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than 1/n. Besides, we need to use resampling to find a satisfactory correction; this will be the subject of
the following sections.

3. Preliminary notions

For the remainder of the paper, we revert to the general setup: an n× p design matrix X (assumed
to have full-rank), the dependent variable Y satisfying the linear model Y = (Y1, ...,Yn)

T = X β + ε

with respect to the i.i.d. errors ε = (ε1, ...,εn)
T ; here, ε1 has mean zero, unknown variance σ2, and

cumulative distribution function denoted by F . We denote X T = (X1, ...,Xn), Xi = (Xi1, ...,Xip)
T ∈

Rp, i = 1,2, ...,n, the new regressor X f ∈ Rp and the new dependent variable Y f (the subscript ‘ f ’ will
only be used for future observations). Define

β̂ = (β̂1, ..., β̂p)
T = (X T X )−1X T Y (3.1)

as the least squares estimator of the parameter vector β . Then, define the centered estimated residual
ε̂ = (ε̂1, ..., ε̂n)

T and the residual empirical process F̂(x) for any x ∈ R respectively as

ε̃i = Yi −X T
i β̂ = εi −X T

i (β̂ −β )

ε̂i = ε̃i −
1
n

n

∑
j=1

ε̃ j

F̂(x) =
1
n

n

∑
i=1

1ε̂i⩽x.

(3.2)

We also define X n =
1
n ∑

n
i=1 Xi ∈ Rp. From (3.2),∫

xdF̂ =
1
n

n

∑
i=1

ε̂i = 0, σ̂
2 =

∫
x2dF̂ =

1
n

n

∑
i=1

ε̂
2
i . (3.3)

Here and in the rest of this paper, the lower case letters x,y,z will be used to represent a scalar. For a
function g : R → R, define g

′
as its derivative. Denote D = D[0,1] the space of càdlàg functions on [0,1]

with Skorohod topology–see chapter 3 of Billingsley [6].
To derive our results, we need the following assumptions.
Assumptions:

1. ε1’s distribution is absolutely continuous with respect to Lebesgue measure. F is second order
continuous differentiable and supx∈R |F ′′

(x)|< ∞, Eε1 = 0, E|ε1|4 < ∞. The new regressor X f ∈
Rp and the new dependent variable Y f satisfy Y f = X T

f β +ξ . ξ is independent of ε and has the
same distribution as ε1.

2. One of the two following conditions holds true:

2.1. Fixed design: X and X f are fixed, i.e., non-random.

2.2. Random design: X and X f are random. However, X f is independent of ε,ξ ; and X is
independent of ε,ξ ,X f .

3. X T X is invertible for ∀n ⩾ p and limn→∞
X T X

n = A, limn→∞ X n = b; here A is an invertible
matrix and b ∈ Rp. Besides, there exists a constant M > 0 such that ∥Xi∥2 ⩽ M for i = 1,2, ...,n
and ∥X f ∥2 ⩽ M. ∥.∥2 denotes the Euclidean norm in Rp.
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4. Define H(x) = Eε11ε1⩽x and for ∀x,z ∈ R.

V (x,z) = σ
2F

′
(x)F

′
(z)
(
X T

f A−1X f +1−2X T
f A−1b

)
−(F

′
(x)H(z)+F

′
(z)H(x))(X T

f A−1b−1)+F(min(x,z))−F(x)F(z)

We also define U (x) = V (x,x)+V (−x,−x)−2V (x,−x)

(3.4)

Assume F
′
(x)> 0,∀x ∈ R, and U (x)> 0 for ∀ 0 < x < ∞.

For a function g : R → R and a point x ∈ R, we define the limit from the left as

g−(x) = lim
y→x,y<x

g(y) (3.5)

if this limit exists. Note that g ∈ D implies that g−(x) exists for ∀x ∈ (0,1). As in section 1.1.4 of Politis
et al. [29], for any 0 < α < 1, we define the α quantile of a cumulative distribution function g as

cα = inf{x ∈ R : g(x)⩾ α}. (3.6)

The meaning of notations P,P∗,E,E∗ is presented in definition 1.1. The symbol → represents
convergence in R, and →L represents convergence in distribution. Without being specified, the con-
vergence assumes the sample size n → ∞. Φ(·) and Φ−1(·) respectively represents the cumulative
distribution function and the quantile of the standard normal distribution. In the case of random design,
the convergence results hold true for almost sure X and X f .

REMARK 3.1 (a) We centered ε̃i in eq. (3.2), but if the design matrix X has a column of ones, then
summation of the estimated residuals will be 0 exactly, and re-centering is superfluous.
(b) In the case of random design, we assume assumption 3 and 4 happen for almost sure X and X f .
(c) There are various linear model settings, e.g., presence of outliers, errors being dependent, errors
being being heteroskedastic, etc. This paper cannot discuss all situations simultaneously. So we focus
on the classical setting, i.e., without outliers and errors are i.i.d., to present our work.

4. Gaussian approximation in bootstrap prediction

Residual-based bootstrap has been widely used in interval prediction for various models, such as Thombs
and Schucany [39], and Li and Politis [26]. Stine [38] introduced a residual-based bootstrap algorithm
for prediction, but this algorithm is typically characterized by finite sample undercoverage; see Li and
Politis [25]. To alleviate the finite-sample undercoverage, Politis [28] proposed the Model-free/Model-
Based (MF/MB) bootstrap, that resamples the predictive residuals r̂ = (r̂1, ..., r̂n)

T instead of the usual
fitted residuals. The predictive residuals are sometimes called the ‘leave-one-out’ residuals, and are
defined as:

r̃i = Yi −X T
i (X T

−iX−i)
−1X T

−iY−i, r̂i = r̃i −
1
n

n

∑
j=1

r̃ j, i = 1,2, ...,n (4.1)

here X−i and Y−i are the design matrix X and the dependent variable vector Y respectively, having
left out the ith row. For a least squares estimator, the predictive residuals can be efficiently computed
using the hat matrix; see theorem 10.1 in Seber and Lee [32].

For concreteness, the algorithms are as follows:
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Algorithm 4.1 (Residual-based bootstrap) Input: Design matrix X and dependent variable data
vector Y satisfying Y = X β + ε , the new regression vector X f of interest, number of bootstrap
replicates B, nominal coverage probability 1−α

1. Calculate statistics β̂ = (X T X )−1X T Y and ε̂ = (ε̂1, ..., ε̂n)
T as in eq. (3.2).

2. Generate i.i.d. residuals ε∗ = (ε∗1 , ...,ε
∗
n )

T and ξ ∗ by drawing from ε̂1, ..., ε̂n with replacement.
Then calculate Y ∗ = X β̂ + ε∗ and Y ∗

f = X T
f β̂ + ξ ∗. Re-estimate β̂ ∗ = (X T X )−1X T Y ∗ and

calculate the prediction root δ ∗
b = Y ∗

f −X T
f β̂ ∗

3. Repeat step 2 for b = 1,2, ...,B, and calculate the 1−α (unadjusted) sample quantile ĉ∗1−α
of

|δ ∗
b |, b = 1,2, ...,B.

4. The prediction interval of Y f is given by
{

Y f : |Y f −X T
f β̂ |⩽ ĉ∗1−α

}
REMARK 4.1 If we replace ε̂ by r̂ in algorithm 4.1, we then obtain the MF/MB bootstrap algorithm.

The Glivenko - Cantelli theorem ensures that the empirical process of the bootstrapped prediction
root Y ∗

f −X T
f β̂ ∗ converges to P∗

(
Y ∗

f −X T
f β̂ ∗ ⩽ x

)
for any x ∈ R P∗ almost surely as B → ∞. There-

fore, the residual-based bootstrap approximates the unobservable conditional cumulative distribution
function P∗(|Y f −X T

f β̂ | ⩽ x) by P∗
(
|Y ∗

f −X T
f β̂ ∗|⩽ x

)
, and estimates the latter distribution by the

bootstrapped prediction root’s empirical process; see Politis et al. [29].
Notably, the notation P∗ and E∗ are used for the conditional probability and expectation conditioning

on all observed data in this paper. Note that this definition coincides with ‘the probability and expecta-
tion in the bootstrap world’ which is typical in the bootstrap literature; see e.g., Cheng and Huang [8].
The bootstrap approximation inevitably introduces errors. This section focuses on understanding the
asymptotic behavior of the error process.

S (x) =
√

n
(

P∗(|Y f −X T
f β̂ |⩽ x)−P∗(|Y ∗

f −X T
f β̂

∗|⩽ x)
)

(4.2)

here Y ∗
f and β̂ ∗ are defined in algorithm 4.1. We refer to Bickel and Freedman [5] and Politis et al.[29]

for the related researches.
The asymptotic behavior of S is summarized in theorem 4.2.

THEOREM 4.2 Suppose assumption 1 to 4 hold true. Then for any given real numbers 0 < r < s < ∞,

sup
x∈[r,s]

sup
y∈R

|P(S (x)⩽ y)−Φ

(
y√

U (x)

)
| → 0 (4.3)

here U is defined in (3.4).

Hence, if a prediction interval Γ has the form
{

y ∈ R : |y−X T
f β̂ |⩽ x

}
(where x is a given posi-

tive number), then the conditional probability P∗ (Y f ∈ Γ
)

and Γ ’s coverage probability estimated by
the residual-based bootstrap algorithm (i.e., P∗(|Y ∗

f −X T
f β̂ ∗| ⩽ x), where Y ∗

f and β̂ ∗ are defined in
algorithm 4.1) has an error. Moreover,

√
n× this error has an asymptotic normal distribution with mean

0 and a specific variance U (x)(depending on x).
In the conditional coverage context, an application of theorem 4.2 is to calculate a prediction inter-

val’s guarantee level. For example, by choosing y = 0, and x = c∗1−α
which denotes the 1−α quantile

of the distribution P∗(|Y ∗
f −X T

f β̂ ∗|⩽ x), we have the following corollary
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COROLLARY 4.1 Under assumptions 1 to 4, the prediction interval generated by residual-based boot-
strap has an asymptotically 50% guarantee level.

Alternatively, for a given γ ∈ (0,1), we could choose y = Φ−1(γ), the γ quantile of the standard
normal distribution, and x = c∗

1−α−Φ−1(γ)×
√

U (c∗1−α
)/
√

n
. Since U is continuous, theorem 4.2 implies

the event {P∗(|Y f −X T
f β̂ | ⩽ c∗

1−α−Φ−1(γ)×
√

U (c∗1−α
)/
√

n
)− (1−α) ⩾ 0}, which is equivalent to the

event

√
n

P∗(|Y f −X T
f β̂ |⩽ c∗1−α−Φ−1(γ)×

√
U (c∗1−α

)/
√

n
)− (1−α −

Φ−1(γ)×
√

U (c∗1−α
)

√
n

)


⩾ Φ

−1(γ)×
√

U (c∗1−α
)

(4.4)

asymptotically has unconditional probability 1− γ . In other words, the prediction interval {y ∈ R :
|y−X T

f β̂ | ⩽ c∗
1−α−Φ−1(γ)×

√
U (c∗1−α

)/
√

n
} has an asymptotic guarantee level 1− γ . Section 5 adopts

this idea. However, in order to estimate U , statisticians need to estimate F(x) = Prob(ε1 ⩽ x), the
derivative F

′
(x) and H(x) =Eε11ε1⩽x, which is complex. To make our work practical, section 5 presents

a resampling algorithm that automatically generates the desired prediction interval without estimating
U .

5. Bootstrap prediction interval with unconditional guarantee

For a fixed dimensional linear model, bootstrap algorithms like the residual-based bootstrap and the
MF/MB bootstrap generate asymptotically valid prediction intervals. Besides, Steinberger and Leeb
[37] and Zhang and Politis [48] constructed asymptotically valid prediction intervals for high dimen-
sional linear models. However, the statistician cannot adjust those prediction intervals’ guarantee level;
for example, corollary 4.1 says that the residual-based bootstrap has asymptotic guarantee level 50%.
Therefore, in practice, the statistician cannot expect the possibility for a prediction interval to have a
conditional coverage probability less than the nominal coverage probability. Ideally, we would wish for
an algorithm that can generate an asymptotic valid prediction interval with a suitable guarantee level
which is useful for both fixed and high dimensional regression. However, if the dimension is large,
eq.(2.5) shows that the prediction intervals satisfying different purposes may not coincide with each
other asymptotically. Therefore, finding a ‘good’ prediction interval can be a subtle problem for a high
dimensional regression.

Focus on the fixed dimensional linear regression, this section proposes two new variations on these
bootstrap methods, namely the Residual bootstrap with unconditional guarantee (RBUG) and the Pre-
dictive residual bootstrap with unconditional guarantee (PRBUG), that maintain the asymptotic validity
but also allows us to choose the prediction interval’s guarantee level. These algorithms involve two steps:
generating a valid prediction interval by residual-based bootstrap or MF/MB bootstrap; then calibrating
the length of the prediction interval. Calibration of a confidence/prediction interval is not a new idea; see
Loh [23, 24], Politis et al. [29] and Beran [4]. Their work calibrated a confidence interval based on the
Edgeworth expansion. Our method does not use Edgeworth expansion. Instead, our method calibrates
the prediction interval based on theorem 4.2 and the idea of eq. (4.4).

In order to use eq.(4.4), we need to estimate U . In section A.2 of the supplement [49], we show
that the error process S (x)(defined in (4.2)) can be approximated by a special stochastic process



12 of 50 Y.ZHANG AND D.N. POLITIS

M̃m
( x+m

2m

)
− M̃−

m
(−x+m

2m

)
, here

M̃m(x) =
√

nF
′
(xm)

(
X T

f (X T X )−1X T
ε − 1

n

n

∑
j=1

ε j

)
− 1√

n

n

∑
j=1

(
1ε j⩽xm −F(xm)

)
(5.1)

m is a sufficiently large positive integer and xm = 2mx−m. As long as m is large, changing m does not
affect the value of M̃m

( x+m
2m

)
− M̃−

m
(−x+m

2m

)
. Fortunately, simulating M̃m in the bootstrap world is not

difficult. So we can implicitly estimate U by simulating M̃m. Algorithm 5.1 adopts this idea, i.e., first
estimate c∗1−α

, the 1−α (unadjusted) quantile of the conditional distribution P∗(|Y ∗
f −X T

f β̂ ∗| ⩽ x).

Then estimate the coverage probability adjustment −Φ−1(γ)×
√

U (c∗1−α
)

√
n in eq.(4.4) by simulating M̃m.

Finally, calibrate the prediction interval based on the adjustment.

Algorithm 5.1 (RBUG/PRBUG) Input: Design matrix X and dependent variable data vector Y
satisfying Y = X β + ε , the new regression vector X f of interest, and number of bootstrap replicates
B, number of replicates to find quantile’s adjustment B1, nominal coverage probability 1 − α , and
nominal guarantee level 1− γ

Note: For RBUG, we define τ̂ = (τ̂1, ..., τ̂n)
T = ε̂ as in (3.2), while for PRBUG, we define τ̂ = r̂ as

in (4.1).
Calculate an unadjusted sample quantile
1. Calculate the statistics β̂ = (X T X )−1X T Y and τ̂ .
2. Generate i.i.d. residuals ε∗ = (ε∗1 , ...,ε

∗
n )

T and ξ ∗ by drawing from τ̂1, ..., τ̂n with replacement;
calculate Y ∗ = X β̂ + ε∗, Y ∗

f = X T
f β̂ + ξ ∗ and β̂ ∗ = (X T X )−1X T Y ∗; derive the prediction root

δ ∗
b = Y ∗

f −X T
f β̂ ∗.

3. Repeat 2 for b = 1,2, ...,B, and calculate the 1−α unadjusted sample quantile (denoted as ĉ∗1−α
)

of |δ ∗
b |, b = 1,2, ...,B.

Find the quantile adjustment
4. Generate i.i.d. e∗ = (e∗1, ...,e

∗
n)

T by drawing from τ̂1, ..., τ̂n with replacement, then derive Y † =

X β̂ +e∗, β̂ † = (X T X )−1X T Y †. Then define ζ̂ ∗
i =X T

f β̂ + τ̂i−X T
f β̂ †+ 1

n ∑
n
j=1 e∗j for i= 1,2, ...,n.

Calculate

p∗b1
=

1√
n

n

∑
i=1

1|ζ̂ ∗
i |⩽ĉ∗1−α

− 1√
n

n

∑
i=1

1|e∗i |⩽ĉ∗1−α
(5.2)

5. Repeat step 4 for b1 = 1,2, ...,B1, then calculate the 1− γ sample quantile (denoted as d̂∗
1−γ

) of
p∗b1

,b1 = 1,2, ...,B1.
Calibrate the prediction interval
6. Calculate ĉ∗

1−α+d̂∗1−γ
/
√

n
, the 1−α + d̂∗

1−γ
/
√

n sample quantile of |δ ∗
b |, b = 1,2, ...,B

7. The prediction interval with 1−α coverage probability and 1− γ guarantee level is given by the
set {

x ∈ R : |x−X T
f β̂ |⩽ ĉ∗

1−α+d̂∗1−γ
/
√

n

}
. (5.3)

REMARK 5.1 This remark explains why step 4 and 5 in RBUG/PRBUG simulates M̃m. Suppose we use
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RBUG. Then

1√
n

n

∑
i=1

1|ζ̂ ∗
i |⩽x =

1√
n

n

∑
i=1

1−x+X T
f (β̂ †−β̂ )− 1

n ∑
n
j=1 e∗j⩽τ̂i⩽x+X T

f (β̂ †−β̂ )− 1
n ∑

n
j=1 e∗j

=
√

n

(
F̂

(
x+X T

f (β̂ † − β̂ )− 1
n

n

∑
j=1

e∗j

)
− F̂−

(
−x+X T

f (β̂ † − β̂ )− 1
n

n

∑
j=1

e∗j

)) (5.4)

so p∗b1
equals

√
n

(
F̂

(
ĉ∗1−α +X T

f (β̂ † − β̂ )− 1
n

n

∑
j=1

e∗j

)
− F̂(ĉ∗1−α)

)
− 1√

n

n

∑
j=1

(
1e∗j⩽ĉ∗1−α

− F̂(ĉ∗1−α)
)

−
√

n

(
F̂−

(
−ĉ∗1−α +X T

f (β̂ † − β̂ )− 1
n

n

∑
j=1

e∗j

)
− F̂−(−ĉ∗1−α)

)
+

1√
n

n

∑
j=1

(
1e∗j<−ĉ∗1−α

− F̂−(−ĉ∗1−α)
)

(5.5)
which simulates M̃m

( x+m
2m

)
−M̃−

m
(−x+m

2m

)
in the bootstrap world. The same discussion applies to PRBUG

as well.

We focus on proving RBUG’s validity, i.e., that prediction interval (5.3) satisfies definition 1.2.
Define the simulated stochastic process

M̂ (x) =
√

nF̂

(
x+X T

f (X T X )−1X T e∗− 1
n

n

∑
j=1

e∗j

)
− 1√

n

n

∑
j=1

1e∗j⩽x

and Ŝ (x) = M̂ (x)−M̂−(−x)

(5.6)

and the quantiles

c∗1−α = inf
{

x ∈ R : P∗
(
|Y ∗

f −X T
f β̂

∗|⩽ x
)
⩾ 1−α

}
and d∗

1−γ(x) = inf
{

z ∈ R : P∗
(
Ŝ (x)⩽ z

)
⩾ 1− γ

} (5.7)

See algorithm 5.1 for the meaning of the notations. Denote

c∗(1−α,1− γ) = c∗1−α+d∗1−γ
(c∗1−α

)/
√

n (5.8)

From theorem 1.2.1 of Politis et al. [29], ĉ∗
1−α+d̂∗1−γ

/
√

n
converges to c∗(1−α,1− γ) almost surely as

B,B1 → ∞. Therefore, the theoretical justification only focuses on c∗(1−α,1− γ).

THEOREM 5.2 Consider the RBUG algorithm, i.e, algorithm 5.1 with τ̂ = ε̂ as in (3.2). Suppose assump-
tion 1 to 4 hold true. Then, for any given 0 < α,γ < 1,δ > 0,

P
(
|P∗
(
|Y f −X T

f β̂ |⩽ c∗(1−α,1− γ)
)
− (1−α)|⩽ δ

)
→ 1

P
(
{P∗

(
|Y f −X T

f β̂ |⩽ c∗(1−α,1− γ)
)
⩾ 1−α}

)
→ 1− γ

(5.9)
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In other words, RBUG is able to generate a prediction interval with desired asymptotic coverage
probability and guarantee level.

Corollary 5.1 proves the validity of PRBUG. In corollary 5.1, we choose τ̂ = r̂ in algorithm 5.1 and
define C∗

1−α
= inf

{
x ∈ R : P∗(|Y ∗

f −X T
f β̂ ∗|⩽ x)⩾ 1−α

}
; D∗

1−γ
(x)= inf

{
z ∈ R : P∗

(
Ŝ (x)⩽ z

)
⩾ 1− γ

}
.

We define C∗(1−α,1− γ) = C∗
1−α+D∗

1−γ
(C∗

1−α
)/
√

n. That is, C∗
1−α

, D∗
1−γ

(x) and C∗(1−α,1− γ) play

the same roles as c∗1−α
, d∗

1−γ
and c∗(1−α,1− γ). The only reason for using another set of notations is

that we change the sampling mechanism (i.e., replace ε̂ in algorithm 5.1 by r̂).

COROLLARY 5.1 Consider the PRBUG algorithm, i.e, algorithm 5.1 with τ̂ = r̂. Suppose assumptions
1 to 4 hold true. Then, for any given 0 < α,γ < 1,δ > 0,

P
(
|P∗
(
|Y f −X T

f β̂ |⩽C∗(1−α,1− γ)
)
− (1−α)|⩽ δ

)
→ 1

P
(
{P∗

(
|Y f −X T

f β̂ |⩽C∗(1−α,1− γ)
)
⩾ 1−α}

)
→ 1− γ.

(5.10)

REMARK 5.2 Similar to residual-based bootstrap and MF / MB bootstrap, section 6 shows that PRBUG
tends to generate a wider, and of higher guarantee level, prediction interval than RBUG.

6. Numerical justification

This section applies numerical simulations to demonstrate the finite sample performance of RBUG/PRBUG.
The alternatives are the residual-based bootstrap(RB), the MF/MB bootstrap(MF/MB), the split confor-
mal prediction defined in Lei et al. [19] and Vovk’s tolerance region [42]. The classical conformal
prediction algorithm (e.g., Vovk et al. [43]) assumed X f is random, which is unsuitable for our setting.
Vovk’s tolerance region yields a prediction interval satisfying eq. (1.4) but not condition (1.3). Lei et al.
[19] showed that the split conformal prediction could generate an asymptotic valid prediction interval
when X f is fixed, which coincides with our setting.

Figure 1 plots point-wise prediction intervals for the linear model Yi = 0.8 + 0.5Xi + εi. I.i.d.
residuals are generated by normal distribution with mean 0 and variance 1. When the sample size is
small, the prediction intervals generated by RBUG / PRBUG is significantly wider than the prediction
intervals generated by classical bootstrap methods. On the other hand, when the sample size is large,
the prediction intervals generated by different algorithms coincide with each other.

Our linear model of choice is denoted as the Experiment model and defined as follows: Y =
X β + ε , and β ’s dimension is 8. β = (β0,β1, ...,β7)

T with β0 = 1.0, β1 = 0.5, β2 = −1.0, β3 =
−0.5, β4 = 1.5, β5 = −1.5 and βi = 0 for i ⩾ 6. The design matrix X is generated by i.i.d. standard
normal random variables, and is fixed in each experiment. The new regressor X f = (X f ,0, ...,X f ,7)

T is
given by X f ,i = 0.1× i, i = 0,1, ...,7. The i.i.d. error vector ε is generated by various distributions. We
choose the sample size n = 50,100,200,400,1200. The result is demonstrated in table 2, table 3, figure
2 and figure 3.

When the sample size is small (e.g. 50 or 100 in the example), the MF/MB bootstrap alleviates the
residual-based bootstrap’s under-coverage nature. Therefore, it has a higher guarantee level than the
residual-based bootstrap. Yet this modification does not change the asymptotic guarantee level (in other
words, the MF/MB bootstrap still has 50% asymptotic guarantee level). The split conformal prediction
also has a high guarantee level when the sample size is small and a low guarantee level when the sample
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(a) Sample size = 80 (b) Sample size = 400

FIG. 1. Predictors and point-wise prediction intervals for the linear model Yi = 0.8+ 0.5Xi + εi, i = 1,2, .... The prediction
intervals are generated by the following methods: RB for the residual-based bootstrap(Stein [38]); MF/MB for the model-free /
model-based bootstrap(Politis [28]); RBUG and PRBUG for algorithm 5.1. We choose the nominal coverage probability 1−α =
95% and the nominal guarantee level(in RBUG / PRBUG) 1− γ = 90%.

size is moderate or large. Vovk’s tolerance region has the desired guarantee level when the sample size
is large. However, when the sample size is small (e.g., 50 or 100), the tolerance region is always too
wide. On the other hand, the RBUG and the PRBUG algorithms improve the residual-based bootstrap’s
performance by controlling the asymptotic guarantee level. PRBUG reaches the desired guarantee levels
when the sample size is moderate, while RBUG needs a large number of data in order to achieve the
desired guarantee level. So we recommend using PRBUG in practice. When the sample size is large,
the bootstrap algorithms’ conditional coverage probabilities are close to 95%, and the adjustments made
by RBUG / PRBUG are not significant.

In practice, our work can be particularly useful when the sample size n is not very large. Suppose
we use the residual-based bootstrap. In table 2 we see that the 15% quantile of conditional coverage
probabilities is 91.0% when the sample size is 100, which means 15% of the nominal 95% predic-
tion intervals’ conditional coverage probabilities are less than 91%. On the other hand, the RBUG’s
15% quantile is 93.5% and the PRBUG’s 15% quantile is 95.5%, which is significantly larger than the
residual-based bootstrap’s quantile.

7. Conclusion

Focusing on the fixed dimensional linear model, in this paper we derive the asymptotic distribution of the
difference between the conditional coverage probability of a nominal prediction interval P∗

(
|Y f −X T

f β̂ |⩽ x
)

and the conditional coverage probability of a prediction interval for residual-based bootstrapped obser-
vations P∗

(
|Y ∗

f −X T
f β̂ ∗|⩽ x

)
. According to this result, the prediction interval generated by residual-

based bootstrap has approximately 50% probability to yield conditional under-coverage.
We then develop a new bootstrap algorithm that generates prediction intervals with arbitrarily assigned

conditional coverage probability and guarantee level, and prove its asymptotic validity. Our theoretical
results are corroborated by several finite-sample simulations.
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Table 2. Performance of different algorithms on the Experiment model. The nominal coverage probability is 95% and the
nominal guarantee level is 85%(we also choose γ = 15% in (1.5)). The residuals are generated by normal random variables with
mean 0 and variance 1. In the ‘Algorithm’ column, ‘RB’ means residual-based bootstrap; ‘MF/MB’ means MF/MB bootstrap;
‘split-conformal’ means the split conformal prediction(defined in Lei et al. [19]), Vovk’s tolerance region was defined in remark
1.3, and RBUG / PRBUG mean algorithm 5.1. We use the R package maintained by Tibshirani et al. [40] to perform the split
conformal prediction. ‘Length’ represents the average length of the prediction interval. The number of bootstrap replicates is
B = 3000, the number of replicates to find quantile’s adjustment is B1 = 3000. The result is generated by 1500 simulations.

Sample size Algorithm Quantiles of coverage probabilities Guarantee level Length
15% 30% 50%

50 RB 87.8% 90.2% 92.4% 21.1% 3.63
MF / MB 93.8% 95.5% 96.9% 75.6% 4.40
split-conformal 95.9% 97.8% 99.0% 89.2% 5.65
Vovk’s tolerance region 95.9% 98.0% 99.1% 89.2% 5.69
RBUG 91.2% 93.7% 95.7% 57.9% 4.19
PRBUG 95.8% 97.3% 98.5% 90.3% 5.02

100 RB 91.0% 92.6% 93.9% 29.0% 3.78
MF / MB 93.7% 94.9% 95.9% 69.3% 4.14
split-conformal 95.1% 96.7% 98.0% 86.0% 4.78
Vovk’s tolerance region 97.3% 98.5% 99.2% 96.5% 5.55
RBUG 93.5% 94.9% 96.1% 68.1% 4.22
PRBUG 95.5% 96.6% 97.6% 89.1% 4.58

200 RB 92.5% 93.4% 94.3% 34.7% 3.83
MF / MB 93.7% 94.5% 95.3% 58.9% 4.00
split-conformal 93.6% 94.9% 96.0% 69.8% 4.19
Vovk’s tolerance region 95.9% 97.0% 97.9% 92.7% 4.69
RBUG 94.2% 95.0% 95.8% 71.0% 4.12
PRBUG 95.1% 95.9% 96.7% 87.5% 4.29

400 RB 93.5% 94.1% 94.7% 41.3% 3.88
MF / MB 94.0% 94.6% 95.2% 58.3% 3.96
split-conformal 93.7% 94.7% 95.5% 65.2% 4.05
Vovk’s tolerance region 96.1% 96.8% 97.5% 95.5% 4.50
RBUG 94.6% 95.3% 95.9% 75.5% 4.08
PRBUG 95.1% 95.7% 96.2% 87.5% 4.16

1200 RB 94.0% 94.5% 94.9% 47.9% 3.91
MF / MB 94.2% 94.7% 95.1% 55.8% 3.94
split-conformal 94.1% 94.6% 95.2% 60.5% 3.97
Vovk’s tolerance region 95.1% 95.6% 96.2% 88.1% 4.15
RBUG 94.7% 95.1% 95.6% 76.7% 4.03
PRBUG 94.9% 95.3% 95.7% 81.0% 4.05
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(a) Residual-based bootstrap (b) MF / MB bootstrap

(c) RBUG (d) PRBUG

FIG. 2. Histograms for the conditional coverage probabilities. Here we use the Experiment model with sample size 400. The
residuals are generated by i.i.d. normal random variables with mean 0 and variance 1. The solid red line is the nominal coverage
probability(95%); the green, black and red dashed lines respectively represents the 13%, 15%, 17% quantile of conditional
coverage probabilities. In order to have a 1− γ = 85% guarantee level, the solid red line should be close to the black dashed line.
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Table 3. Performance of different algorithms on the Experiment model. The nominal coverage probability is 95%, and the
nominal guarantee level is 85%. The residuals are generated by the Laplace distribution with mean 0 and scale 1/

√
2; which

makes the residuals’ variance 1.
Sample size Algorithm Quantiles of coverage probabilities Guarantee level Length

15% 30% 50%
50 RB 87.7% 90.4% 92.4% 23.3% 3.83

MF / MB 92.2% 94.1% 95.5% 58.7% 4.60
split-conformal 94.4% 96.6% 98.1% 82.1% 6.14
Vovk’s tolerance region 94.6% 96.6% 98.2% 82.7% 6.15
RBUG 91.1% 93.6% 95.7% 57.3% 4.75
PRBUG 94.5% 96.1% 97.6% 81.4% 5.67

100 RB 91.0% 92.6% 93.9% 33.9% 4.03
MF / MB 92.9% 94.2% 95.3% 57.1% 4.41
split-conformal 94.5% 96.1% 97.3% 81.5% 5.30
Vovk’s tolerance region 96.8% 98.0% 98.9% 94.6% 6.68
RBUG 93.6% 95.1% 96.4% 72.1% 4.80
PRBUG 94.9% 96.2% 97.3% 84.7% 5.21

200 RB 92.6% 93.6% 94.5% 37.7% 4.13
MF / MB 93.4% 94.4% 95.2% 54.7% 4.32
split-conformal 93.3% 94.6% 95.6% 63.9% 4.54
Vovk’s tolerance region 95.6% 96.7% 97.6% 91.0% 5.37
RBUG 94.5% 95.3% 96.1% 76.7% 4.64
PRBUG 95.1% 95.8% 96.6% 86.0% 4.83

400 RB 93.4% 94.1% 94.8% 42.6% 4.18
MF / MB 93.8% 94.5% 95.1% 53.7% 4.28
split-conformal 93.5% 94.5% 95.4% 60.4% 4.40
Vovk’s tolerance region 95.9% 96.6% 97.3% 94.5% 5.16
RBUG 94.7% 95.3% 95.9% 78.6% 4.53
PRBUG 95.0% 95.6% 96.2% 84.5% 4.63

1200 RB 94.1% 94.5% 94.9% 47.9% 4.23
MF / MB 94.2% 94.6% 95.0% 52.5% 4.26
split-conformal 93.9% 94.5% 95.2% 57.1% 4.28
Vovk’s tolerance region 95.1% 95.6% 96.1% 86.4% 4.61
RBUG 94.8% 95.2% 95.6% 77.6% 4.42
PRBUG 94.9% 95.3% 95.7% 81.8% 4.45
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(a) Residual-based bootstrap (b) MF / MB bootstrap

(c) RBUG (d) PRBUG

FIG. 3. Histograms for the conditional coverage probabilities of the Experiment model. The sample size is 400 and the residuals
are generated by i.i.d. Laplace random variables with mean 0 and the scale parameter 1/

√
2, which makes the variance 1. The

meaning of lines coincide with figure 2.
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Residual-based and the MF/MB bootstrap are widely used for prediction in numerous settings like
nonparametric/nonlinear regression, quantile regression, time series analysis (regression with dependent
errors, autoregression, etc.), and others. We expect our ideas to be applicable in those settings as well;
future work will address the details. Furthermore, the case of high-dimensional linear regression is of
current interest, i.e., where p is allowed to diverge as n → ∞; this can also be the subject of future work.
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A. Proof of theorem 4.2 in section 4

Adopt the notations in section 3 and 4 of the paper. Suppose assumption 1 to 4 in section 3 hold true.
For any given positive integer 0 < m < ∞, define xm = 2mx−m and the stochastic process

M̃m(x) =
√

nF
′
(xm)

(
X T

f (X T X )−1X T
ε − 1

n

n

∑
j=1

ε j

)
− 1√

n

n

∑
j=1

(
1ε j⩽xm −F(xm)

)
(A.1)

Then EM̃m(x) = 0 for any given x.
Define the Gaussian process Mm(x) ∈ D,x ∈ [0,1] such that

EMm(x) = 0, EMm(x)Mm(z) = V (xm,zm) for ∀x,z ∈ [0,1] (A.2)

here zm = 2mz−m and Mm has continuous sample paths almost surely. V is defined in (3.4) of the
paper. The proof of theorem 4.2 has 4 steps:

1. Show the existence of Mm for any m

2. Prove that M̃m →L Mm (i.e., converges in distribution) under the Skohord topology. Then
lemma A.1 below implies that M̃m(x)’s sample paths will be similar to a continuous function,
i.e., |M̃m(x)− M̃m(z)| can be arbitrarily small as |x− z| → 0 with probability tending to 1.

3. Prove that the random variable M̃m
( x+m

2m

)
−M̃−

m (−x+m
2m )’s asymptotic distribution will be a normal

distribution with mean 0 and variance U (x) for any x ∈ (0,m]. See (3.5) in the paper for the
definition of the superscript −.

4. Approximate S (x)(see (4.2)) by M̃m
( x+m

2m

)
− M̃−

m (−x+m
2m ).

But before presenting the proof, we would like to introduce some useful lemmas.

A.1 Useful lemmas

Suppose random variables A,B satisfy |A−B| ⩽ δ ,δ > 0. Then ∀x ∈ R, −1x−δ<B⩽x ⩽ 1A⩽x −1B⩽x ⩽
1x<B⩽x+δ , which implies

E|1A⩽x −1B⩽x|⩽ E|1A⩽x −1B⩽x|×1|A−B|⩽δ +Prob(|A−B|> δ )

⩽ Prob(|A−B|> δ )+Prob(x−δ < B ⩽ x+δ )
(A.3)

For any given positive integer r and ∀ti ∈ [0,1],si ∈ R, i = 1,2, ...,r, define ti,m = 2mti −m, then

0 ⩽ lim
n→∞

E

(
r

∑
i=1

siM̃m(ti)

)2

= lim
n→∞

σ
2

r

∑
i=1

r

∑
j=1

sis jF
′
(ti,m)F

′
(t j,m)×

(
X T

f

(
X T X

n

)−1

X f +1−2X T
f

(
X T X

n

)−1

X n

)

− lim
n→∞

r

∑
i=1

r

∑
j=1

sis j

(
X T

f

(
X T X

n

)−1

X n −1

)
× (F

′
(ti,m)H(t j,m)+F

′
(t j,m)H(ti,m))

+ lim
n→∞

r

∑
i=1

r

∑
j=1

sis j (F(min(ti,m, t j,m))−F(ti,m)F(t j,m)) =
r

∑
i=1

r

∑
j=1

sis jV (ti,m, t j,m)

(A.4)
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Eq.(A.4) implies that V (2m ·−m,2m ·−m) will be the asymptotic covariance function of the stochastic
process M̃m(·). Moreover, for any real number sequence {zi}i=1,...,r, the matrix {V (zi,z j)}i, j=1,...,r is
positive semi-definite. From assumption 3, define σ̂2 as in section (3.3) of the paper

Eσ̂
2 ⩽

2
n

n

∑
i=1

E
(

εi −
∑

n
j=1 ε j

n

)2

+
2
n

n

∑
i=1

E((Xi −X n)
T (X T X )−1X T

ε)2

⩽ 2σ
2 +

8M2σ2

n
∥
(

X T X

n

)−1

∥2

(A.5)

so Eσ̂2 = O(1). Here ∥
(

X T X
n

)−1
∥2 is the matrix 2-norm of

(
X T X

n

)−1
. (A.3), (A.4) and (A.5) will

be frequently used in the following sections. Then we introduce some lemmas. Lemma A.1 focuses on
showing the existence of Mm and deriving its properties.

LEMMA A.1 Suppose assumption 1 to 4 hold true.
1. For ∀0 < m ∈ N, ∃ a Gaussian process Mm in D satisfying (A.2) and having continuous sample

paths almost surely.
2. For any given ξ > 0,

lim
δ→0,δ>0

P

(
sup

y,z∈[0,1],|y−z|<δ

|Mm(y)−Mm(z)|> ξ

)
= 0 (A.6)

In addition, suppose a sequence of stochastic processes Ñm,n ∈ D,n = 1,2, ... satisfy Ñm,n →L Mm
under Skohord topology as n → ∞. Then ∃ δ > 0 such that

limsup
n→∞

P

(
sup

y,z∈[0,1],|y−z|<δ

|Ñm,n(y)− Ñm,n(z)|⩾ ξ

)
⩽ ξ (A.7)

proof of lemma A.1. From (A.4), for any ti ∈ [0,1], i= 1,2, ...,r, the random vector (Mm(t1), ...,Mm(tr))T

has joint normal distribution with mean 0 and covariance matrix {V (2mti −m,2mt j −m)}i, j=1,2,...,r, so
the consistency conditions in Kolmogorov extension theorem are satisfied. ∀0 ⩽ t1 ⩽ t ⩽ t2 ⩽ 1,

E|Mm(t)−Mm(t1)|2|Mm(t)−Mm(t2)|2 ⩽
1
2
(
E|Mm(t)−Mm(t1)|4 +E|Mm(t)−Mm(t2)|4

)
⩽

3
2
(
E(Mm(t)−Mm(t1))2 +E(Mm(t)−Mm(t2))2)2

(A.8)

The last inequality comes from the fact that Mm(t)−Mm(t1) and Mm(t)−Mm(t2) have normal distri-
bution. Define ti,m = 2mti −m for i = 1,2. Form assumption 1, ∃ a constant C > 0 with

E(Mm(t)−Mm(t1))2

= σ
2(X T

f A−1X f +1−2X T
f A−1b)(F

′
(2mt −m)−F

′
(t1,m))2

+F(2mt −m)−F(t1,m)− (F(2mt −m)−F(t1,m))2

−2(X T
f A−1b−1)(F

′
(2mt −m)−F

′
(t1,m))(H(2mt −m)−H(t1,m))⩽C(t − t1)

(A.9)
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Similarly, E(Mm(t2)−Mm(t))2 ⩽C(t2−t). Then (A.8) implies E|Mm(t)−Mm(t1)|2|Mm(t)−Mm(t2)|2 ⩽
3
2C2(t2 − t1)2. Set α = β = 1 and choose the non-decreasing, continuous function F(x) =

√
3√
2
Cx in

eq.(13.15) of Billingsley [6]. (A.9) also implies (13.16) in [6]. From theorem 13.6 in [6], ∃ Mm ∈ D
satisfying (A.2). According to (A.9),

E(Mm(t)−Mm(t1))4 ⩽ 3C2(t − t1)2 (A.10)

so theorem 2.3 in Hahn [14] is satisfied by choosing r = 4 and the function

f (x) = 3C2x2 ⇒
∫
[0,1]

x−(r+1)/r f 1/r(x)dx = 4(3C2)1/4 < ∞ (A.11)

In particular, we can choose Mm ∈ D such that |Mm(t)−Mm(t1)|⩽ AH(|t − t1|) almost surely, A is a
random variable with EA4 < ∞, H is a continuous nondecreasing function on [0,1] such that H(0) = 0.
This implies Mm has continuous sample paths almost surely.

We prove (A.6) by

P

(
sup

y,z∈[0,1],|y−z|<δ

|Mm(y)−Mm(z)|> ξ

)
⩽

EA4

ξ 4 ×H4(δ ) (A.12)

.
For any given δ > 0, define a function

hδ ( f ) = sup
x,y∈[0,1],|x−y|<δ

| f (x)− f (y)|, here f ∈ D (A.13)

From section 12, Billingsley [6], if fn,n = 1, ... converges to f in D, then ∃ strictly increasing mappings
λn : [0,1]→ [0,1],n= 1,2, ... such that limn→∞ supx∈[0,1] |λn(x)−x|= 0 and limn→∞ supx∈[0,1] | fn(λn(x))−
f (x)|= 0; so

|hδ ( fn)−hδ ( f )|⩽ sup
x,y∈[0,1],|x−y|<δ

| fn(x)− fn(y)− f (x)+ f (y)|

⩽ sup
x∈[0,1]

| fn(x)− f (x)|+ sup
y∈[0,1]

| fn(y)− f (y)|

⩽ 2( sup
x∈[0,1]

| fn(x)− f (λ−1
n (x))|+ sup

x∈[0,1]
| f (λ−1

n (x))− f (x)|)

(A.14)

If f is continuous on [0,1], then limn→∞ |hδ ( fn)− hδ ( f )| = 0. For Mm is continuous almost surely,
and R,D are Polish spaces(theorem 12.2 in Billingsley [6]), 3.8, page 348 in Jacod and Shiryaev [17]
implies hδ (Ñm,n)→L hδ (Mm), and theorem 1.9 in Shao [36] implies

limsup
n→∞

P

(
sup

x,y∈[0,1],|x−y|<δ

|Ñm,n(x)− Ñm,n(y)|⩾ ξ

)

⩽ P

(
sup

x,y∈[0,1],|x−y|<δ

|Mm(x)−Mm(y)|⩾ ξ

)
< ξ

(A.15)

for sufficiently small δ > 0. □
Notably, Ñm,n may not be continuous for finite n. However, if Ñm,n →L Mm, lemma A.1 implies

that the discontinuity in Ñm,n should vanish asymptotically. Combine lemma A.1 with (A.3), we derive
the following corollary:
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COROLLARY A.1 Suppose assumption 1 to 4 hold true. Then for any given 0 < c < 1/4,

lim
δ→0

sup
|x−y|+|z−w|<δ

|P(Mm(x)−Mm(1− x)⩽ z)−P(Mm(y)−Mm(1− y)⩽ w)|= 0 (A.16)

and if Ñm,n →L Mm, then

lim
n→∞

sup
x∈[ 1

2+c,1−c],z∈R
|P(Ñm,n(x)− Ñ −

m,n(1− x)⩽ z)−P(Mm(x)−Mm(1− x)⩽ z)|= 0 (A.17)

Here (x,z),(y,w) ∈ [ 1
2 + c,1− c]×R. See (3.5) in the paper for the definition of the superscript −.

proof of corollary A.1. Without loss of generality, assume z ⩽ w. From (A.3), for ∀ ξ > 0,

|P(Mm(x)−Mm(1− x)⩽ z)−P(Mm(y)−Mm(1− y)⩽ w)|
⩽ P(|Mm(x)−Mm(y)|> ξ/2)+P(|Mm(1− x)−Mm(1− y)|> ξ/2)

+P(z−ξ < Mm(y)−Mm(1− y)⩽ z+ξ )+P(z < Mm(y)−Mm(1− y)⩽ w)
(A.18)

Define ym = 2my−m. From assumption 4, miny∈[ 1
2+c,1−c]U (ym)> 0 so

P(z < Mm(y)−Mm(1− y)⩽ w) = Φ

(
w√

U (ym)

)
−Φ

(
z√

U (ym)

)

⩽
δ

miny∈[ 1
2+c,1−c]

√
U (ym)

(A.19)

Similarly P(z−ξ <Mm(y)−Mm(1−y)⩽ z+ξ )⩽ 2ξ

min
y∈[ 1

2 +c,1−c]

√
U (ym)

. (A.16) is proved by applying

lemma A.1 to (A.18).
For ∀x ∈ [ 1

2 + c,1 − c], define gx : D → R : gx( f ) = f (x)− f−(1 − x). We use the same nota-
tion as (A.14). If fn converges to f in D and f is continuous, |gx( fn)−gx( f )|⩽ | fn(x)− f (λ−1

n (x))|+
| f (λ−1

n (x))− f (x)|+limsupt→1−x,t<1−x | fn(t)− f (λ−1
n (t))|+limsupt→1−x,t<1−x | f (λ−1

n (t))− f (t)|, which

tends to 0 as n→∞. Therefore, 3.8, page 348 in Jacod and Shiryaev [17] implies gx(Ñm,n)→L gx(Mm).
∀ψ > 0, t ∈ R, define G0(x) = (1−min(1,max(x,0))4)4, and Gψ,t(x) = G0(ψx−ψt). From Xu et al.
[47], ∃ a constant C > 0 with

1x⩽t ⩽ Gψ,t(x)⩽ 1x⩽t+1/ψ , sup
x,t

|G′
ψ,t(x)|⩽Cψ, sup

x,t
|G′′

ψ,t(x)|⩽Cψ
2, sup

x,t
|G′′′

ψ,t(x)|⩽Cψ
3 (A.20)

For ∀ψ > 0, define the set Aψ = {Gψ,t : t ∈ R}. ∀δ > 0, choose γ = δ/(Cψ), then ∀Gψ,t ∈Aψ ,x,y ∈ R
with |x−y|< γ , |Gψ,t(x)−Gψ,t(y)|⩽Cψ|x−y|< δ ⇒ Aψ is equi-continuous and uniformly bounded
by 1. From theorem 3.1 in Rao [30],

lim
n→∞

sup
Gψ,t∈Aψ

|EGψ,t

(
Ñm,n(x)− Ñ −

m,n(1− x)
)
−EGψ,t (Mm(x)−Mm(1− x)) |= 0 (A.21)
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for any fixed x ∈ [ 1
2 + c,1− c]. From (A.20),

P(Ñm,n(x)− Ñ −
m,n(1− x)⩽ z)−P(Mm(x)−Mm(1− x)⩽ z)

⩽ EGψ,z

(
Ñm,n(x)− Ñ −

m,n(1− x)
)
−EGψ,z−1/ψ(Mm(x)−Mm(1− x))

⩽ sup
Gψ,t∈Aψ

|EGψ,t

(
Ñm,n(x)− Ñ −

m,n(1− x)
)
−EGψ,t (Mm(x)−Mm(1− x)) |

+P
(

z− 1
ψ

< Mm(x)−Mm(1− x)⩽ z+
1
ψ

)
P(Ñm,n(x)− Ñ −

m,n(1− x)⩽ z)−P(Mm(x)−Mm(1− x)⩽ z)

⩾ EGψ,z−1/ψ

(
Ñm,n(x)− Ñ −

m,n(1− x)
)
−EGψ,z (Mm(x)−Mm(1− x))

⩾− sup
Gψ,t∈Aψ

|EGψ,t

(
Ñm,n(x)− Ñ −

m,n(1− x)
)
−EGψ,t (Mm(x)−Mm(1− x)) |

−P
(

z− 1
ψ

< Mm(x)−Mm(1− x)⩽ z+
1
ψ

)

(A.22)

Choose y = x,z = z+ 1
ψ
,w = z− 1

ψ
in (A.16) and let ψ → ∞,

lim
n→∞

sup
z∈R

|P(Ñm,n(x)− Ñ −
m,n(1− x)⩽ z)−P(Mm(x)−Mm(1− x)⩽ z)|= 0 (A.23)

Finally, for any given ξ > 0, we choose 1
2 +c= x0 < x1 < ... < xM = 1−c and xi−xi−1 < δ , i= 1,2, ...,M

with sufficiently small δ > 0. For ∀x ∈ [ 1
2 + c,1− c], ∃ I ∈ {0,1, ...,M} such that |x− xI |< δ , and

sup
z∈R

|P(Ñm,n(x)− Ñ −
m,n(1− x)⩽ z)−P(Mm(x)−Mm(1− x)⩽ z)|

⩽ sup
z∈R

|P(Ñm,n(x)− Ñ −
m,n(1− x)⩽ z)−P(Ñm,n(xI)− Ñ −

m,n(1− xI)⩽ z)|

+ max
I=1,2,...,M

sup
z∈R

|P(Ñm,n(xI)− Ñ −
m,n(1− xI)⩽ z)−P(Mm(xI)−Mm(1− xI)⩽ z)|

+sup
z∈R

|P(Mm(xI)−Mm(1− xI)⩽ z)−P(Mm(x)−Mm(1− x)⩽ z)|

(A.24)

From (A.3), ∀ ξ > 0,

sup
z∈R

|P(Ñm,n(x)− Ñ −
m,n(1− x)⩽ z)−P(Ñm,n(xI)− Ñ −

m,n(1− xI)⩽ z)|

⩽ P
(
|Ñ −

m,n(1− x)− Ñ −
m,n(1− xI)|>

ξ

2

)
+P

(
|Ñm,n(x)− Ñm,n(xI)|>

ξ

2

)
+2 max

I=1,2,...,M
sup
z∈R

|P(Ñm,n(xI)− Ñ −
m,n(1− xI)⩽ z)−P(Mm(xI)−Mm(1− xI)⩽ z)|

+sup
z∈R

P(z−ξ < Mm(xI)−Mm(1− xI)⩽ z+ξ )

(A.25)

Since supx∈[ 1
2+c,1−c] P

(
|Ñm,n(x)− Ñm,n(xI)|> ξ

2

)
and supx∈[ 1

2+c,1−c] P
(
|Ñ −

m,n(1− x)− Ñ −
m,n(1− xI)|> ξ

2

)
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are less or equal to P
(

supy,z∈[0,1],|y−z|<δ |Ñm,n(y)− Ñm,n(z)|> ξ

2

)
, (A.7), (A.16) and (A.23) imply

(A.17). □
The second lemma focuses on showing the asymptotic continuity of the residuals’ empirical process

in the real world and in the bootstrap world. Define the stochastic processes

α̂(x) =
1√
n

n

∑
i=1

(1ε̂i⩽x −F(x)) and α̃
∗(x) =

1√
n

n

∑
i=1

(1ε∗i ⩽x − F̂(x)) (A.26)

Here ε̂i and F̂ are defined in (3.2). ε∗i , i = 1,2, ...,n are i.i.d. random variables generated from F̂ . In
algorithm 4.1, ε∗i serves as the bootstrapped residuals. Define two assistant processes

F̃(x) =
1
n

n

∑
i=1

1εi⩽x and α̃(x) =
1√
n

n

∑
i=1

(1εi⩽x −F(x)), here ∀x ∈ R (A.27)

The notation Op and op have the same meaning as definition 1.9 in Shao [36], i.e., two random
variable sequences Xn,Yn,n = 1,2, ... satisfy Xn = Op(Yn) if for ∀t > 0, ∃ a constant Ct such that
Prob(|Xn|⩾Ct |Yn|)⩽ t for n = 1,2, .... Xn = op(Yn) if Xn/Yn →p 0 as n → ∞.

LEMMA A.2 Suppose assumption 1 to 4 hold true. Then for any given ξ > 0 and −∞ < r ⩽ s < ∞,
∃ δ > 0 such that

limsup
n→∞

P

(
sup

x,y∈[r,s],|x−y|<δ

|α̂(x)− α̂(y)|> ξ

)
< ξ (A.28)

Besides, ∃δ > 0 and N > 0 such that ∀n ⩾ N,

P

({
P∗

(
sup

x,y∈[r,s],|x−y|<δ

|α̃∗(x)− α̃
∗(y)|> ξ

)
> ξ

})
< ξ (A.29)

proof of lemma A.2. From assumption 4, F is strictly increasing in R. From lemma 4.1 and 4.2, Bickel
and Freedman [5], ∃ independent random variables Ui, i = 1,2, ... with uniform distribution on [0,1], a
Brownian bridge B and a constant C such that

P

(
sup

x∈[0,1]
| 1√

n

n

∑
i=1

(1Ui⩽x − x)−B(x)|⩾C log(n)/
√

n

)
⩽C log(n)/

√
n (A.30)

and ∀0 < δ < 1/2, ξ > 0,

E sup
x,y∈[0,1],|x−y|<δ

|B(x)−B(y)|⩽C(−δ log(δ ))1/2

⇒ P

(
sup

x,y∈[0,1],|x−y|<δ

|B(x)−B(y)|> ξ

)
⩽

C(−δ log(δ ))1/2

ξ

(A.31)

We choose εi = F−1(Ui), i = 1,2, ...,n (εi has distribution F according to page 150, Billingsley [6]),

α̃(x) =
1√
n

n

∑
i=1

(1Ui⩽F(x)−F(x))⇒ P
(

sup
x∈R

|α̃(x)−B(F(x))|⩾C log(n)/
√

n
)
⩽C log(n)/

√
n

(A.32)
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From assumption 3,

max
i=1,...,n

1
n
X T

i (
X T X

n
)−1Xi ⩽

1
n

M2∥(X
T X

n
)−1∥2 = O(1/n) (A.33)

and E∥(X T X )1/2(β̂ −β )∥2
2 = pσ2 implies ∥(X T X )1/2(β̂ −β )∥2 = Op(1). Define

λ̂ =
1
n

n

∑
j=1

ε̃ j =
1
n

n

∑
j=1

ε j −X
T
n (β̂ −β ) (A.34)

here ε̃i and X n are defined in (3.2). With this definition we have ε̂i = ε̃i − λ̂ . Besides,

Eλ̂
2 ⩽ 2E

(
1
n

n

∑
j=1

ε j

)2

+2E
(
X

T
n (β̂ −β )

)2
=

2σ2

n
+

2σ2X n(X T X /n)−1X n

n

⇒ λ̂ = Op(1/
√

n)

(A.35)

Define

α̃
†(x) =

1√
n

n

∑
i=1

(
1ε̃i⩽x −F(x)

)
⇒ α̂(x) = α̃

†(x+ λ̂ )+
√

n(F(x+ λ̂ )−F(x)) (A.36)

From theorem 6.2.1 in Koul [18],

sup
x∈R

|α̃†(x)− α̃(x)−
√

nF
′
(x)X

T
n (β̂ −β )|= op(1) (A.37)

Therefore,

sup
x∈R

|α̂(x)− α̃(x)−
√

nF
′
(x)X

T
n (β̂ −β )−

√
nF

′
(x)λ̂ |

⩽ sup
x∈R

|α̃†(x)− α̃(x)−
√

nF
′
(x)X

T
n (β̂ −β )|+ sup

x∈R
|α̃(x+ λ̂ )− α̃(x)|

+sup
x∈R

√
n|(F ′

(x+ λ̂ )−F
′
(x))X

T
n (β̂ −β )|+ sup

x∈R

√
n|F(x+ λ̂ )−F(x)−F

′
(x)λ̂ |

(A.38)

From assumption 1 and 3 and Taylor’s theorem, supx∈R
√

n|(F ′
(x+ λ̂ )−F

′
(x))X

T
n (β̂ −β )| and supx∈R

√
n|F(x+

λ̂ )−F(x)−F
′
(x)λ̂ | have order Op(1/

√
n). From (A.32), with probability tending to 1,

sup
x∈R

|α̃(x+ λ̂ )− α̃(x)|⩽ 2C log(n)√
n

+ sup
x∈R

|B(F(x+ λ̂ ))−B(F(x))| (A.39)

F is uniform continuous according to assumption 1, so

sup
x∈R

|α̃(x+ λ̂ )− α̃(x)|= op(1)⇒ sup
x∈R

|α̂(x)− α̃(x)−
√

nF
′
(x)X

T
n (β̂ −β )−

√
nF

′
(x)λ̂ |= op(1)

(A.40)
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For any given −∞ < r ⩽ s < ∞ and sufficiently small δ > 0,

sup
x,y∈[r,s],|x−y|<δ

|α̂(x)− α̂(y)|⩽ sup
x,y∈[r,s],|x−y|<δ

|α̃(x)− α̃(y)|

+ sup
x,y∈[r,s],|x−y|<δ

√
n|(F ′

(x)−F
′
(y))× (X

T
n (β̂ −β )+ λ̂ )|+op(1)

(A.41)

From assumption 1, (A.32) and (A.31), we prove (A.28).
Define the function φ̂(x) = inf{t|x ⩽ F̂(t)},x ∈ [0,1]. Page 150, Billingsley [6] implies φ̂(x) ⩽

t ⇔ x ⩽ F̂(t). If U has uniform distribution on [0,1], then φ̂(U) has distribution F̂ . Without loss of
generality, we choose ε∗i = φ̂(Ui), i = 1,2, ...,n; (A.30) implies

α̃
∗(x) =

1√
n

n

∑
i=1

(1Ui⩽F̂(x)− F̂(x))⇒ P∗
(

sup
x∈R

|α̃∗(x)−B(F̂(x))|⩾C log(n)/
√

n
)
⩽C log(n)/

√
n

(A.42)
From assumption 3

F̂(x) =
1
n

n

∑
i=1

1
εi⩽x+X T

i (β̂−β )+λ̂
⩽

1
n

n

∑
i=1

1
εi⩽x+M∥β̂−β∥2+|λ̂ | = F̃(x+M∥β̂ −β∥2 + |λ̂ |) (A.43)

Similarly, F̂(x) ⩾ F̃(x−M∥β̂ − β∥2 − |λ̂ |). For any given ω > 0, we can find Cω > 0 with P(∥β̂ −
β∥2 >

Cω

2
√

n ) < ω and P(|λ̂ | > MCω

2
√

n ) < ω for any n. From Glivenko - Cantelli theorem and dominated

convergence theorem, limn→∞ P(supx∈R |F̃(x)−F(x)| > ω) = 0. If ∥β̂ − β∥2 ⩽ Cω

2
√

n , |λ̂ | ⩽ MCω

2
√

n and

supx∈R |F̃(x)−F(x)| ⩽ ω , then for any given −∞ < r ⩽ s < ∞, δ > 0, −ω +F(x− MCω√
n ) ⩽ F̂(x) ⩽

ω +F(x+ MCω√
n ), and

sup
r⩽x⩽y⩽s,y−x<δ

F̂(y)− F̂(x)⩽ 2ω + sup
r⩽x⩽y⩽s,y−x<δ

F(y+
MCω√

n
)−F(x− MCω√

n
) (A.44)

For any given −∞ < r ⩽ s < ∞ and ξ > 0, we choose sufficiently small ω,δ > 0 and define ζ =
2ω + supr⩽x⩽y⩽s,y−x<δ F(y+ MCω√

n )−F(x− MCω√
n ),

sup
x,y∈[r,s],|x−y|<δ

|α̃∗(x)− α̃
∗(y)|⩽ 2sup

x∈R
|α̃∗(x)−B(F̂(x))|+ sup

x,y∈[r,s],|x−y|<δ

|B(F̂(x))−B(F̂(y))|

⩽ 2sup
x∈R

|α̃∗(x)−B(F̂(x))|+ sup
x,y∈[−ω+F(r−MCω√

n ),ω+F(s+MCω√
n )],|x−y|⩽ζ

|B(x)−B(y)|

⇒ P∗

(
sup

x,y∈[r,s],|x−y|<δ

|α̃∗(x)− α̃
∗(y)|> ξ

)

⩽ P∗
(

sup
x∈R

|α̃∗(x)−B(F̂(x))|> ξ

4

)
+P∗

(
sup

x,y∈[0,1],|x−y|⩽ζ

|B(x)−B(y)|> ξ

2

)
(A.45)

For F is uniform continuous, (A.31) and (A.42) imply (A.29). □
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A.2 Proof of theorem 4.2

The existence of Mm has been shown in lemma A.1, and this section will complete the remaining steps.
proof of theorem 4.2.

Prove M̃m →L Mm. Here M̃m is defined in (A.1).
According to theorem 13.5 in Billingsley [6], it suffices to verify the following conditions:
1. ∀z1, ...,zk ∈ [0,1], (M̃m(z1), ...,M̃m(zk))→L (Mm(z1), ...,Mm(zk)) in Rk. According to Cramér-

Wold device(theorem 1.9 in Shao [36]), this condition can be proved by showing

k

∑
j=1

s jM̃m(z j)→L

k

∑
j=1

s jMm(z j) (A.46)

here s1, ...,sk ∈ R are any given real numbers.
2. Mm(1)−Mm(1−δ )→L 0 in R as δ → 0,δ > 0
3. ∃b ⩾ 0,a > 1/2, and a non-decreasing, continuous function G on [0,1] such that

E|M̃m(t)− M̃m(s)|2b|M̃m(s)− M̃m(r)|2b ⩽ (G(t)−G(r))2a for ∀1 ⩾ t > s > r ⩾ 0 (A.47)

For the first condition: define cT =(c1, ...,cn)=X T
f (X T X )−1X T − 1

n eT ⇒ ci =X T
f (X T X )−1Xi−

1
n . Here e = (1,1, ...,1)T . Define z j,m = 2mz j −m, j = 1,2, ...,k. For any given s1, ...,sk ∈ R

k

∑
j=1

s jM̃m(z j) =
n

∑
i=1

(
(

k

∑
j=1

√
ns jF

′
(z j,m))ciεi −

1√
n
(

k

∑
j=1

s j(1εi⩽z j,m −F(z j,m)))

)
⇒ E

k

∑
j=1

s jM̃m(z j) = 0

(A.48)
Form assumption 3 and (5.8.4) in Horn and Johnson [16], we define Yi = (∑k

j=1
√

ns jF
′
(z j,m))ciεi −

1√
n (∑

k
j=1 s j(1εi⩽z j,m −F(z j,m))),

EY 2
i = nσ

2c2
i

k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)F

′
(zl,m)+

1
n

k

∑
j=1

k

∑
l=1

s jsl(F(min(z j,m,zl,m))−F(z j,m)F(zl,m))

−2ci

k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)H(zl,m)

⇒ lim
n→∞

n

∑
i=1

EY 2
i = lim

n→∞
σ

2
k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)F

′
(zl,m)×

(
X T

f (
X T X

n
)−1X f +1−2X T

f (
X T X

n
)−1X n

)

+
k

∑
j=1

k

∑
l=1

s jsl(F(min(z j,m,zl,m))−F(z j,m)F(zl,m))− lim
n→∞

2
k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)H(zl,m)× (X T

f (
X T X

n
)−1X n −1)

= σ
2K × (X T

f A−1X f +1−2X T
f A−1b)+N −2R× (X T

f A−1b−1)
(A.49)

here we define

K =
k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)F

′
(zl,m), N =

k

∑
l=1

s jsl(F(min(z j,m,zl,m))−F(z j,m)F(zl,m))

and R =
k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)H(zl,m)

(A.50)
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From mean value inequality,

n

∑
i=1

E|Yi|3 ⩽ 4k2E|ε1|3
k

∑
j=1

|s jF
′
(z j,m)|3 ×n

√
n

n

∑
i=1

|ci|3 +4k2
k

∑
j=1

|s j|3 ×
1

n
√

n

n

∑
i=1

E|1εi⩽z j,m −F(z j,m)|3

(A.51)
From assumption 3,

n
√

n
n

∑
i=1

|ci|3 ⩽ n
√

n max
i=1,2,...,n

|ci|×
n

∑
i=1

c2
i

⩽
1+M2∥(X T X /n)−1∥2√

n
×
(

X T
f (

X T X

n
)−1X f +1−2X T

f (
X T X

n
)−1X n

) (A.52)

which has order O(1/
√

n). ∥(X T X /n)−1∥2 is the matrix 2 norm of the matrix (X T X /n)−1. If
σ2K × (X T

f A−1X f + 1− 2X T
f A−1b)+N − 2R× (X T

f A−1b− 1) ̸= 0, from Theorem 1.15, Theorem
1.11, and (1.97) in Shao [36],

k

∑
j=1

s jM̃m(z j) =
∑

k
j=1 s jM̃m(z j)√

∑
n
i=1 EY 2

i

×

√
n

∑
i=1

EY 2
i

→L N(0,σ2K × (X T
f A−1X f +1−2X T

f A−1b)+N −2R× (X T
f A−1b−1))

(A.53)

On the other hand, if σ2K×(X T
f A−1X f +1−2X T

f A−1b)+N−2R×(X T
f A−1b−1)= 0, then ∀δ > 0,

from (A.49), limn→∞ P(|∑k
j=1 s jM̃m(z j)| ⩾ δ ) ⩽ limn→∞

E|∑k
j=1 s jM̃m(z j)|2

δ 2 = 0 ⇒ ∑
k
j=1 s jM̃m(z j) →L 0.

From theorem 1.9, Shao [36], we prove (A.46) and the first condition.
The second condition: ∀ξ > 0,

P(|Mm(1)−Mm(1−δ )|⩾ ξ )⩽
E|Mm(1)−Mm(1−δ )|2

ξ 2

⩽
σ2(X T

f A−1X f −2X T
f A−1b+1)(F

′
(m)−F

′
(m−2mδ ))2

ξ 2

+
2|X T

f A−1b−1|× |F ′
(m)−F

′
(m−2mδ )|× |H(m)−H(m−2mδ )|

ξ 2

+
|F(m)−F(m−2mδ )|+ |F(m)−F(m−2mδ )|2

ξ 2

(A.54)

From assumption 1, limδ→0,δ>0 Prob(|Mm(1)−Mm(1−δ )|⩾ ξ ) = 0, and we prove the second con-
dition.

The third condition: we choose b = a = 1 in (A.47) and define tm = 2mt −m,∀t. For ∀t,s ∈ [0,1],
we define

A (t,s) =
√

n
(

F
′
(tm)−F

′
(sm)

)
×

(
X T

f (X T X )−1X T
ε − 1

n

n

∑
j=1

ε j

)

and B(t,s) =
1√
n

n

∑
i=1

(1sm<εi⩽tm −F(tm)+F(sm))

(A.55)
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From mean value inequality,

E|M̃m(t)− M̃m(s)|2|M̃m(s)− M̃m(r)|2

⩽ 4E
(
A (t,s)2A (s,r)2 +B(t,s)2A (s,r)2 +A (t,s)2B(s,r)2 +B(t,s)2B(s,r)2) (A.56)

From assumption 3, X T
f (X T X /n)−1X f → X T

f A−1X f and X T
f (X T X /n)−1X n → X T

f A−1b.

Therefore, ∃C > 0 such that |X T
f (X T X

n )−1X f + 1− 2X T
f (X T X

n )−1X n| ⩽ C for ∀n. Define c =

(c1, ...,cn)
T , ci = X T

f (X T X )−1Xi −1/n, ∀1 ⩾ t > s > r ⩾ 0

EA (t,s)2A (s,r)2 = n2
(

F
′
(tm)−F

′
(sm)

)2(
F

′
(sm)−F

′
(rm)

)2
E(cT

ε)4

= n2
(

F
′
(tm)−F

′
(sm)

)2(
F

′
(sm)−F

′
(rm)

)2
×

(
Eε

4
1 ×

n

∑
i=1

c4
i +3σ

4
n

∑
i=1

n

∑
j=1, j ̸=i

c2
i c2

j

)
⩽ 16m4(Eε

4
1 +3σ

4)(t − s)2(s− r)2 × sup
x∈R

|F ′′
(x)|4

×
(

X T
f (

X T X

n
)−1X f +1−2X T

f (
X T X

n
)−1X n

)2

⩽ 16C2m4(Eε
4
1 +3σ

4)(t − r)2 × sup
x∈R

|F ′′
(x)|4

(A.57)

EB(t,s)2B(s,r)2 ⩽
1
n

E(1sm<ε1⩽tm −F(tm)+F(sm))
2(1rm<ε1⩽sm −F(sm)+F(rm))

2

+E(1sm<ε1⩽tm −F(tm)+F(sm))
2 ×E(1rm<ε1⩽sm −F(sm)+F(rm))

2

+2(E(1sm<ε1⩽tm −F(tm)+F(sm))(1rm<ε1⩽sm −F(sm)+F(rm)))
2

⩽
3
n
(F(tm)−F(sm))(F(sm)−F(rm))+(F(tm)−F(sm))(F(sm)−F(rm))

+2(F(tm)−F(sm))
2(F(sm)−F(rm))

2 ⩽ 6(F(tm)−F(rm))
2

(A.58)

EA (t,s)2B(s,r)2 =
(

F
′
(tm)−F

′
(sm)

)2
× (

n

∑
i=1

c2
i Eε

2
i (1rm<εi⩽sm −F(sm)+F(rm))

2

+σ
2(n−1)

n

∑
i=1

c2
i E(1rm<ε1⩽sm −F(sm)+F(rm))

2 +2
n

∑
i=1

n

∑
j=1, j ̸=i

cic j × (Eε11rm<ε1⩽sm)
2)

⩽ σ
2
(

F
′
(tm)−F

′
(sm)

)2
× (n

n

∑
i=1

c2
i +2((

n

∑
i=1

ci)
2 +

n

∑
i=1

c2
i ))

(A.59)

Notice that n∑
n
i=1 c2

i =X T
f (X T X

n )−1X f +1−2X T
f (X T X

n )−1X n and ∑
n
i=1 ci =X T

f (X T X /n)−1X n−
1, (A.47) is satisfied by choosing G(x) = C′x with a sufficiently large constant C′. Then we prove
M̃m →L Mm. In particular, for any given 0 < r < s < ∞, choose sufficiently large integer m > s+ 1,
from corollary A.1

sup
x∈[r,s],z∈R

|P
(

M̃m

(
x+m

2m

)
− M̃−

m

(
−x+m

2m

)
⩽ z
)
−P

(
Mm

(
x+m

2m

)
−Mm

(
−x+m

2m

)
⩽ z
)
|= o(1)

(A.60)
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see(3.5) for the definition of the superscript −. Since the random variable Mm
( x+m

2m

)
−Mm

(−x+m
2m

)
has

normal distribution with mean 0 and variance U (x) (see (3.4)), the proof remains showing that S (x)
approximately equals M̃m

( x+m
2m

)
− M̃−

m
(−x+m

2m

)
.

Prove S (x) approximately equals M̃m
( x+m

2m

)
− M̃−

m
(−x+m

2m

)
Recall the definition

S (x) =
√

n
(

P∗(|Y f −X T
f β̂ |⩽ x)−P∗(|Y ∗

f −X T
f β̂

∗|⩽ x)
)

(A.61)

here the condtional probability P∗ is defined in definition 1.1. Since Y f −X T
f β̂ = ξ −X T

f

(
X T X

)−1
X T ε ,

here ξ is a random variable being independent of ε and having the same distribution as ε1. We have

P∗
(
|Y f −X T

f β̂ |⩽ x
)
= P∗

(
−x+X T

f
(
X T X

)−1
X T

ε ⩽ ξ ⩽ x+X T
f
(
X T X

)−1
X T

ε

)
= F

(
x+X T

f
(
X T X

)−1
X T

ε

)
−F(−x+X T

f
(
X T X

)−1
X T

ε)

(A.62)
On the other hand, we have Y ∗

f −X T
f β̂ ∗ = ξ ∗−X T

f

(
X T X

)−1
X T ε∗, here ε∗ = (ε∗1 , ...,ε

∗
n )

T and
ξ ∗,ε∗ are independent with distribution F̂(see algorithm 4.1). Take the conditional distribution, we have

P∗(|Y ∗
f −X T

f β̂
∗|⩽ x) =

E∗Prob
(
|Y ∗

f −X T
f β̂ ∗|⩽ x |Y ,ε∗

)
for fixed design

E∗Prob
(
|Y ∗

f −X T
f β̂ ∗|⩽ x |Y ,X ,X f ,ε

∗
)

for random design

= E∗F̂
(

x+X T
f
(
X T X

)−1
X T

ε
∗
)
−E∗F̂−

(
−x+X T

f
(
X T X

)−1
X T

ε
∗
)

(A.63)
Choose m > s+ 1 and define α̂(x) =

√
n(F̂(x)−F(x)) (the same as in (A.26)). ∀x ∈ [r,s], from
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Taylor’s theorem

S (x) =
√

n(F(x+X T
f (X T X )−1X T

ε)−F(−x+X T
f (X T X )−1X T

ε))

−
√

n
(

E∗
(

F̂(x+X T
f (X T X )−1X T

ε
∗)− F̂−(−x+X T

f (X T X )−1X T
ε
∗)
))

=
(

F
′
(x)−F

′
(−x)

)
×
√

nX T
f (X T X )−1X T

ε

+
F

′′
(η1)−F

′′
(η2)

2
×
√

n(X T
f (X T X )−1X T

ε)2

−E∗ (
α̂(x+X T

f (X T X )−1X T
ε
∗)− α̂(x)

)
+E∗ (

α̂
−(−x+X T

f (X T X )−1X T
ε
∗)− α̂

−(−x)
)

−α̂(x)+ α̂
−(−x)−

√
nE∗ (F(x+X T

f (X T X )−1X T
ε
∗)−F(x)

)
+
√

nE∗(F(−x+X T
f (X T X )−1X T

ε
∗)−F(−x))

⇒ sup
x∈[r,s]

|S (x)−
(

M̃m(
x+m

2m
)− M̃−

m (
−x+m

2m
)

)
|⩽

√
n(X T

f (X T X )−1X T
ε)2 × sup

x∈R
|F ′′

(x)|

+ sup
x∈[r,s]

|E∗(α̂(x+X T
f (X T X )−1X T

ε
∗)− α̂(x))|

+ sup
x∈[r,s]

|E∗(α̂−(−x+X T
f (X T X )−1X T

ε
∗)− α̂

−(−x))|

+ sup
x∈[r,s]

|α̂(x)− α̃(x)− F
′
(x)√
n

n

∑
i=1

εi|+ sup
x∈[r,s]

|α̂−(−x)− α̃
−(−x)− F

′
(−x)√

n

n

∑
i=1

εi|

+
√

nE∗(X T
f (X T X )−1X T

ε
∗)2 × sup

x∈R
|F ′′

(x)|

(A.64)
here η1,η2 are two arbitrary real numbers. From lemma A.2, for any given ξ > 0, ∃1/2 > δ > 0 such
that for sufficiently large n, P

(
supx,y∈[−m,m],|x−y|<δ |α̂(x)− α̂(y)|⩽ ξ

)
> 1−ξ . If supx,y∈[−m,m],|x−y|<δ |α̂(x)−

α̂(y)|⩽ ξ , then ∀x ∈ [r,s],

|E∗(α̂−(−x+X T
f (X T X )−1X T

ε
∗)− α̂

−(−x))|, |E∗(α̂(x+X T
f (X T X )−1X T

ε
∗)− α̂(x))|

⩽
√

nP∗(|X T
f (X T X )−1X T

ε
∗|> δ )+ξ ⩽ ξ +

σ̂2
√

nδ 2 X T
f

(
X T X

n

)−1

X f

(A.65)
σ̂2 is defined in(3.3). Also notice that

√
nE∗(X T

f (X T X )−1X T
ε
∗)2 =

σ̂2
√

n
X T

f

(
X T X

n

)−1

X f (A.66)

Since Eσ̂2 ⩽ 4σ2 + 4σ2M2

n ∥(X T X
n )−1∥2 +2Eλ̂ 2 = O(1), combine with (A.38) we have ∀ξ > 0,

P

(
sup

x∈[r,s]
|S (x)−

(
M̃m(

x+m
2m

)− M̃−
m (

−x+m
2m

)

)
|> ξ

)
→ 0 (A.67)
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Finally, from (A.3) and corollary A.1, ∀δ > 0,

sup
x∈[r,s],y∈R

|P(S (x)⩽ y)−Φ

(
y√

U (x)

)
|

⩽ sup
x∈[r,s]

P
(
|S (x)−M̃m(

x+m
2m

)−M̃−
m (

−x+m
2m

)|> δ

)

+3 sup
x∈[r,s],y∈R

|P
(

M̃m(
x+m

2m
)−M̃−

m (
−x+m

2m
)⩽ y

)
−Φ

(
y√

U (x)

)
|

+ sup
x∈[r,s],y∈R

(
Φ

(
y+δ√
U (x)

)
−Φ

(
y−δ√
U (x)

))
(A.68)

From assumption 4, we prove (4.3). □

B. Proofs of theorems in section 5

The Wasserstein distance can be used to quantify the difference between two probability distributions.
We refer chapter 6, Villani [41] for a detail introduction. Lemma B.1 below bounds the Wasserstein
distance between the distribution T (x)= 1

n ∑
n
i=1 1εi−ε⩽x and F(x)=P(ε1 ⩽ x), x∈R. Here ε = 1

n ∑
n
i=1 εi.

LEMMA B.1 Suppose assumption 1 and 2, then

lim
n→∞

inf
X ,Y

E∗|X −Y |2 = 0 almost surely (B.1)

The infimum is taken over all random variables (X ,Y ) ∈ R2 such that P∗(X ⩽ x) = T (x) and P∗(Y ⩽
x) = F(x).

Proof. From assumption 1, Gilvenko-Cantelli theorem, and the strong law of large number(e.g., theo-
rem 1.13 in Shao [36]),

lim
n→∞

sup
x∈R

|T (x)−F(x)|⩽ lim
n→∞

sup
x∈R

|1
n

n

∑
i=1

1εi⩽x −F(x)|+ lim
n→∞

sup
x∈R

|F(x+ ε)−F(x)|= 0 almost surely

(B.2)
From the strong law of large number, limn→∞

∫
R x2dT = limn→∞

1
n ∑

n
i=1 ε2

i − limn→∞ ε
2 = σ2 almost

surely. Choose x0 = 0 in definition 6.8, Villani [41]. From proposition 5.7, page 112 in Çinlar [7] and
theorem 6.9, Villani [41], we prove (B.1). □

Recall (5.6) of the paper, the stochastic process Ŝ (x) is defined as

M̂ (x) =
√

nF̂

(
x+X T

f (X T X )−1X T e∗− 1
n

n

∑
j=1

e∗j

)
− 1√

n

n

∑
j=1

1e∗j⩽x

and Ŝ (x) = M̂ (x)−M̂−(−x)

(B.3)

Lemma B.2 ensures that Ŝ (defined in (5.6) of the paper) has the same asymptotic distribution as
S (defined in (4.2), also see theorem 4.2).
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LEMMA B.2 Suppose assumption 1 to 4 hold true. Then for any given 0 < r < s < ∞,ξ > 0,

lim
n→∞

P

(
sup

x∈[r,s]
sup
y∈R

|P∗
(
Ŝ (x)⩽ y

)
−Φ

(
y√

U (x)

)
|> ξ

)
= 0 (B.4)

here Φ is the cumulative distribution function of a standard normal random variable

Recall that Φ−1(α) is the α−th quantile of Φ . For any given 0 < r < s < ∞ and ξ > 0, lemma B.2
implies with probability tending to 1, ∀2ξ < 1− γ < 1−ξ ,r ⩽ x ⩽ s,

P∗
(
Ŝ (x)⩽

√
U (x)×Φ

−1(1− γ −2ξ )
)
− (1− γ −2ξ )⩽ ξ

⇒ d∗
1−γ(x)⩾

√
U (x)×Φ

−1(1− γ −2ξ )

P∗
(
Ŝ (x)⩽

√
U (x)×Φ

−1(1− γ +ξ )
)
− (1− γ +ξ )⩾−ξ

⇒ d∗
1−γ(x)⩽

√
U (x)×Φ

−1(1− γ +ξ )

(B.5)

see (5.7) for the definition of d∗
1−γ

(x).
Suppose the integer m> s+1. In (A.60) we show the stochastic process M̃m

( x+m
2m

)
−M̃−

m
(−x+m

2m

)
(defined

in (A.1)) has an asymptotic distribution Φ

(
·/
√

U (x)
)

. So the remaining problem involves approxi-

mating the distribution of Ŝ (x) by the distribution of M̃m
( x+m

2m

)
− M̃−

m
(−x+m

2m

)
.

Proof of lemma B.2. From lemma B.1, almost surely for ∀ 1/4 > δ > 0, ∃ N > 0 such that ∀ n ⩾ N,
there exists a random vector (e†

1,ε
†
1 ) ∈ R2 such that P∗(e†

1 ⩽ x) = T (x) (defined in lemma B.1) and
P∗(ε†

1 ⩽ x) = F(x). Moreover, E∗(ε†
1 − e†

1)
2 < δ 9. We generate n i.i.d. observations (e†

i ,ε
†
i ), i =

1,2, ...,n and define e† = (e†
1, ...,e

†
n)

T as well as ε† = (ε†
1 , ...,ε

†
n )

T . Suppose m > s+1 and define

M̃ †
m(x) =

√
nF

′
(xm)

(
X T

f (X T X )−1X T e† − 1
n

n

∑
j=1

e†
j

)
− 1√

n

n

∑
j=1

(1e†
j⩽xm

−T (xm))

M̃†
m(x) =

√
nF

′
(xm)

(
X T

f (X T X )−1X T
ε

† − 1
n

n

∑
j=1

ε
†
j

)
− 1√

n

n

∑
j=1

(1
ε

†
j ⩽xm

−F(xm))

(B.6)

here x ∈ [0,1], xm = 2mx−m. With this definition we have P∗(M̃†
m(x)⩽ y) = P(M̃m(x)⩽ y) for any x,y.
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For any given 1/4 > ξ > 0 and x ∈ ( 1
2 ,1],

P∗
(
|(M̃ †

m(x)−M̃ †−
m (1− x))− (M̃†

m(x)− M̃†−
m (1− x))|> 3ξ

)
⩽ P∗

(√
n|F ′

(xm)−F
′
(−xm)|× |X T

f (X T X )−1X T (ε† − e†)|> ξ

)
+P∗

(
|F ′

(xm)−F
′
(−xm)|× | 1√

n

n

∑
i=1

(ε†
i − e†

i )|> ξ

)

+P∗

(
1√
n
|

n

∑
i=1

1−xm⩽e†
i ⩽xm

−T (xm)+T−(−xm)−1−xm⩽ε
†
i ⩽xm

+F(xm)−F(−xm)|> ξ

)

⩽
(F

′
(xm)−F

′
(−xm))

2E∗(ε†
1 − e†

1)
2

ξ 2 ×

(
X T

f

(
X T X

n

)−1

X f +1

)

+
4

ξ 2 E∗(1e†
1⩽xm

−T (xm)−1
ε

†
1⩽xm

+F(xm))
2

+
4

ξ 2 E∗(1e†
1<−xm

−T−(−xm)−1
ε

†
1<−xm

+F(−xm))
2

(B.7)

Notice that

E∗(1e†
1⩽xm

−T (xm)−1
ε

†
1⩽xm

+F(xm))
2 ⩽ 2E∗(1e†

1⩽xm
−1

ε
†
1⩽xm

)2 +2sup
x∈R

|T (x)−F(x)|2 (B.8)

from (A.3),

E∗|1e†
1⩽xm

−1
ε

†
1⩽xm

|⩽ P∗(|e†
1 − ε

†
1 |> ξ )+F(xm +ξ )−F(xm −ξ )

⩽
δ 9

ξ 2 + sup
x∈R

(F(x)−F(x−2ξ ))
(B.9)

From dominated convergence theorem

E∗(1e†
1<−xm

−T−(−xm)−1
ε

†
1<−xm

+F(−xm))
2

= lim
h→∞

E∗(1e†
1⩽−xm− 1

h
−T (−xm − 1

h
)−1

ε
†
1⩽−xm− 1

h
+F(−xm − 1

h
))2

⩽
2δ 9

ξ 2 +2sup
x∈R

(F(x)−F(x−2ξ ))+2sup
x∈R

|T (x)−F(x)|2

(B.10)
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therefore, from (A.3), assumption 4 and (A.60)

sup
x∈[ r+m

2m , s+m
2m ],y∈R

|P∗
(
M̃ †

m(x)−M̃ †−
m (1− x)⩽ y

)
−Φ

(
y√

U (xm)

)
|

⩽ sup
x∈[ r+m

2m , s+m
2m ],y∈R

P∗
(
|(M̃ †

m(x)−M̃ †−
m (1− x))− (M̃†

m(x)− M̃†−
m (1− x))|> 3ξ

)
+3 sup

x∈[ r+m
2m , s+m

2m ],y∈R
|P∗
(

M̃†
m(x)− M̃†−

m (1− x)⩽ y
)
−Φ

(
y√

U (xm)

)
|

+ sup
x∈[ r+m

2m , s+m
2m ],y∈R

(
Φ

(
y+3ξ√
U (xm)

)
−Φ

(
y−3ξ√
U (xm)

))

⇒ lim
n→∞

sup
x∈[ r+m

2m , s+m
2m ],y∈R

|P∗
(
M̃ †

m(x)−M̃ †−
m (1− x)⩽ y

)
−Φ

(
y√

U (xm)

)
|= 0 almost surely

(B.11)

Define a random variable (e∗1,e
†
1) ∈ R2 which has probability mass 1/n on (ε̂i,εi − ε), i = 1,2, ...,n. We

generate independent random variables (e∗i ,e
†
i ), i = 1,2, ...,n having the same distribution as (e∗1,e

†
1).

Define e∗ = (e∗1, ...,e
∗
n)

T ,e† = (e†
1, ...,e

†
n)

T . With this definition e†
1 still has the cumulative distribution

function T (x). Define the stochastic process

M̃ ∗
m(x) =

√
nF

′
(xm)

(
X T

f (X T X )−1X T e∗− 1
n

n

∑
i=1

e∗i

)
− 1√

n

n

∑
i=1

(1e∗i ⩽xm − F̂(xm)) (B.12)

here xm = 2mx−m. This process uses the same mechanism for generating residuals e∗ as in RBUG(defined
in algorithm 5.1). We have

P∗
(
|M̃ ∗

m(x)−M̃ ∗−
m (1− x)−M̃ †

m(x)+M̃ †−
m (1− x)|> 3ξ

)
⩽

|F ′
(xm)−F

′
(−xm)|2E∗(e∗1 − e†

1)
2

ξ 2 ×

(
X T

f

(
X T X

n

)−1

X f +1

)

+
4

ξ 2 E∗(1e∗1⩽xm − F̂(xm)−1e†
1⩽xm

+T (xm))
2

+
4

ξ 2 E∗(1e∗1<−xm − F̂−(−xm)−1e†
1<−xm

+T−(−xm))
2

(B.13)

Recall X n =
1
n ∑

n
i=1 Xi,

E∗(e∗1 − e†
1)

2 =
1
n

n

∑
i=1

(ε̂i − εi + ε)2 =
1
n

n

∑
i=1

(
(Xi −X n)

T (β̂ −β )
)2

E
(
(Xi −X n)

T (β̂ −β )
)2

= σ
2(Xi −X n)

T (X T X )−1(Xi −X n)

(B.14)
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Assumption 3 implies E∗(e∗1 − e†
1)

2 = Op(1/n). From assumption 3 and Cauchy inequality

F̂(x) =
1
n

n

∑
i=1

1
εi−ε⩽x+(Xi−X n)T (β̂−β )

⩽ T (x+2M∥β̂ −β∥2)

and F̂(x)⩾ T (x−2M∥β̂ −β∥2)

(B.15)

therefore

sup
x∈R

|F̂(x)−T (x)|⩽ sup
x∈R

|T (x+2M∥β̂ −β∥2)−T (x)|+ sup
x∈R

|T (x−2M∥β̂ −β∥2)−T (x)|

⩽ 4sup
x∈R

|F(x)−T (x)|+2sup
x∈R

|F(x+2M∥β̂ −β∥2)−F(x)|+2sup
x∈R

|F(x−2M∥β̂ −β∥2)−F(x)|

(B.16)
Since

E∗(1e∗1⩽xm − F̂(xm)−1e†
1⩽xm

+T (xm))
2

⩽
2E∗(e∗1 − e†

1)
2

ξ 2 +2sup
x∈R

(T (x+ξ )−T (x−ξ ))+2sup
x∈R

|F̂(x)−T (x)|2
(B.17)

The dominated convergence theorem implies

E∗(1e∗1<−xm − F̂−(−xm)−1e†
1<−xm

+T−(−xm))
2

= lim
h→∞

E∗(1e∗1⩽−xm− 1
h
− F̂(−xm − 1

h
)−1e†

1⩽−xm− 1
h
+T (−xm − 1

h
))2

⩽
2E∗(e∗1 − e†

1)
2

ξ 2 +2sup
x∈R

(T (x+ξ )−T (x−ξ ))+2sup
x∈R

|F̂(x)−T (x)|2

(B.18)

and

sup
x∈[ r+m

2m , s+m
2m ],y∈R

|P∗
(
M̃ ∗

m(x)−M̃ ∗−
m (1− x)⩽ y

)
−Φ

(
y√

U (xm)

)
|

⩽ sup
x∈[ r+m

2m , s+m
2m ],y∈R

P∗
(
|(M̃ ∗

m(x)−M̃ ∗−
m (1− x))− (M̃ †

m(x)−M̃ †−
m (1− x))|> 3ξ

)
+3 sup

x∈[ r+m
2m , s+m

2m ],y∈R
|P∗
(
M̃ †

m(x)−M̃ †−
m (1− x)⩽ y

)
−Φ

(
y√

U (xm)

)
|

+ sup
x∈[ r+m

2m , s+m
2m ],y∈R

(
Φ

(
y+3ξ√
U (xm)

)
−Φ

(
y−3ξ√
U (xm)

))
(B.19)

(B.2), (B.11), and (B.16) imply for ∀ξ > 0

lim
n→∞

P

(
sup

x∈[ r+m
2m , s+m

2m ],y∈R
|P∗
(
M̃ ∗

m(x)−M̃ ∗−
m (1− x)⩽ y

)
−Φ

(
y√

U (xm)

)
|> ξ

)
= 0 (B.20)
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Finally, we adopt the notations in lemma A.2. Recall (5.6) (or (B.3) in this section), define xm = 2mx−m

sup
x∈[0,1]

|M̂ (xm)−M̃ ∗
m(x)|⩽

√
nsupx∈R |F ′′

(x)|
2

×

(
X T

f (X T X )−1X T e∗− 1
n

n

∑
i=1

e∗i

)2

+ sup
x∈[0,1]

|α̂(xm +X T
f (X T X )−1X T e∗− 1

n

n

∑
i=1

e∗i )− α̂(xm)|
(B.21)

and

sup
x∈[r,s]

|Ŝ (x)−
(

M̃ ∗
m(

x+m
2m

)−M̃ ∗−
m (

−x+m
2m

)

)
|⩽ sup

x∈[r,s]
|M̂ (x)−M̃ ∗

m(
x+m

2m
)|

+ sup
x∈[r,s]

lim
h→∞

|M̂ (−x− 1
h
)− M̃∗

m(
−x+m

2m
− 1

2hm
)|⩽ 2 sup

x∈[0,1]
|M̂ (xm)−M̃ ∗

m(x)|
(B.22)

∀ξ > 0, (A.3) implies

sup
x∈[r,s],y∈R

|P∗
(
Ŝ (x)⩽ y

)
−Φ

(
y√

U (x)

)
|⩽ P∗

(
sup

x∈[0,1]
|M̂ (xm)−M̃ ∗

m(x)|> ξ

)

+ sup
x∈[r,s],y∈R

(
Φ

(
y+2ξ√

U (x)

)
−Φ

(
y−2ξ√

U (x)

))

+3 sup
x∈[ r+m

2m , s+m
2m ],y∈R

|P∗
(
M̃ ∗

m(x)−M̃ ∗−
m (1− x)⩽ y

)
−Φ

(
y√

U (xm)

)
|

(B.23)

From lemma A.2, for any given ξ > 0, ∃ 1
4 > ξ2 > 0,N > 0 such that for any n ⩾ N,

P
(

supx,y∈[−m−1,m+1],|x−y|<ξ2
|α̂(x)− α̂(y)|> ξ

4

)
< ξ . If supx,y∈[−m−1,m+1],|x−y|<ξ2

|α̂(x)− α̂(y)| ⩽ ξ

4 ,
then

P∗

(
sup

x∈[0,1]
|M̂ (xm)−M̃ ∗

m(x)|> ξ

)

⩽ P∗

√
nsupx∈R |F ′′

(x)|
2

×

(
X T

f (X T X )−1X T e∗− 1
n

n

∑
i=1

e∗i

)2

>
ξ

2


+P∗

(
|X T

f (X T X )−1X T e∗− 1
n

n

∑
i=1

e∗i |⩾ ξ2

)

⩽

(√
nsupx∈R |F ′′

(x)|
ξ

+
1

ξ 2
2

)
E∗

(
X T

f (X T X )−1X T e∗− 1
n

n

∑
i=1

e∗i

)2

(B.24)

Since E∗
(
X T

f (X T X )−1X T e∗− 1
n ∑

n
i=1 e∗i

)2
⩽ 2σ̂2

n

(
X T

f (X T X /n)−1X f +1
)

. From (B.19) we
prove (B.4). □

In lemma B.3, we define

G∗(x) = P∗
(
|Y ∗

f −X T
f β̂

∗|⩽ x
)
, x ∈ R (B.25)
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See algorithm 5.1 for the meaning of Y ∗
f and β̂ ∗

LEMMA B.3 Suppose assumption 1 to 4. Then ∀−∞ < r < s < ∞,ζ > 0, ∃δ > 0 such that

limsup
n→∞

P

(
sup

x∈[r,s]

√
n
(

G∗(x)−G∗(x− δ√
n
)

)
⩾ ζ

)
< ζ (B.26)

Proof. We adopt the notations in lemma A.2 and recall Y ∗
f = X T

f β̂ +ξ ∗. By conditioning on ε∗,

G∗(x) = E∗P∗
(
|ξ ∗−X T

f (X T X )−1X T
ε
∗|⩽ x

∣∣∣ε∗)
= E∗F̂(x+X T

f (X T X )−1X T
ε
∗)−E∗F̂−(−x+X T

f (X T X )−1X T
ε
∗)

= (F(x)−F(−x))+E∗ (F(x+X T
f (X T X )−1X T

ε
∗)−F(x)

)
−E∗ (F(−x+X T

f (X T X )−1X T
ε
∗)−F(−x)

)
+

(α̂(x)− α̂−(−x))√
n

+
1√
n

E∗ (
α̂(x+X T

f (X T X )−1X T
ε
∗)− α̂(x)

)
− 1√

n
E∗ (

α̂
−(−x+X T

f (X T X )−1X T
ε
∗)− α̂

−(−x)
)

(B.27)

Therefore, for ∀ 1
4 > δ > 0,

sup
x∈[r,s]

√
n
(

G∗(x)−G∗(x− δ√
n
)

)
⩽ 2δ sup

x∈[−s−1,s+1]
|F ′

(x)|

+
2supx∈R |F ′′

(x)|σ̂2
√

n

(
X T

f

(
X T X

n

)−1

X f

)
+2 sup

x,y∈[−s−1,s+1],|x−y|⩽ δ√
n

|α̂(x)− α̂(y)|

+4 sup
x∈[−s−1,s+1]

E∗|α̂(x+X T
f (X T X )−1X T

ε
∗)− α̂(x)|

(B.28)

From lemma A.2 and (A.65), we prove (B.26). □
Suppose assumption 1 to 4, from (B.27), (B.28), (B.16), and (B.2),

sup
x>0

|G∗(x)− (F(x)−F(−x))|⩽ 2sup
x∈R

|F̂(x)−F(x)|

+
supx∈R |F ′′

(x)|σ̂2

n

(
X T

f

(
X T X

n

)−1

X f

) (B.29)

which implies ∀ξ > 0, limn→∞ P(supx>0 |G∗(x)− (F(x)−F(−x))|> ξ )= 0. If supx>0 |G∗(x)−(F(x)−
F(−x))|⩽ ξ , by defining c1−α such that F(c1−α)−F(−c1−α) = 1−α ,

G∗(c1−α+2ξ )⩾ 1−α +ξ , G∗(c1−α−2ξ )⩽ 1−α −ξ

⇒ c1−α−2ξ ⩽ c∗1−α ⩽ c1−α+2ξ , ∀2ξ < α < 1−2ξ
(B.30)
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proof of theorem 5.2. Recall Φ−1(α) is the α−th quantile of the standard normal distribution. We
choose r,s in lemma B.2 as c(1−α)/4,c1−α/4, here F(cz)−F(−cz) = z, ∀z ∈ (0,1). From (B.5), (B.29)
and (B.30), for sufficiently small ξ > 0, with probability tending to 1,

d∗
1−γ(c

∗
1−α)⩽ sup

x∈[c1−α−2ξ ,c1−α+2ξ ]

d∗
1−γ(x)⩽ sup

x∈[c1−α−2ξ ,c1−α+2ξ ]

√
U (x)×Φ

−1(1− γ +ξ )

and d∗
1−γ(c

∗
1−α)⩾ inf

x∈[c1−α−2ξ ,c1−α+2ξ ]
d∗

1−γ(x)⩾ inf
x∈[c1−α−2ξ ,c1−α+2ξ ]

√
U (x)×Φ

−1(1− γ −2ξ )
(B.31)

Define

d = sup
x∈[c1−α−2ξ ,c1−α+2ξ ]

√
U (x)×Φ

−1(1− γ +ξ ) and d = inf
x∈[c1−α−2ξ ,c1−α+2ξ ]

√
U (x)×Φ

−1(1− γ −2ξ )

(B.32)
From (B.29), with probability tending to 1,

c∗(1−α,1− γ)⩽ c∗
1−α+ d√

n

⩽ c
1−α+ d√

n+2ξ
and c∗(1−α,1− γ)⩾ c∗

1−α+ d√
n
⩾ c1−α+ d√

n−2ξ
(B.33)

Define c = c
1−α+ d√

n+2ξ
, and c = c1−α+ d√

n−2ξ
. From assumption 1 and 4, cα is continuous in α ∈ (0,1);

and U (x) is continuous in R. Define S as in (4.2). Then
√

n
(

P∗
(
|Y f −X T

f β̂ |⩽ c∗(1−α,1− γ)
)
− (1−α)

)
= S (c1−α)+(S (c∗(1−α,1− γ))−S (c1−α))

+
√

n

(
G∗(c∗(1−α,1− γ))− (1−α +

d∗
1−γ

(c∗1−α
)

√
n

)

)
+
√

U (c1−α)×Φ
−1(1− γ)+

(
d∗

1−γ(c
∗
1−α)−

√
U (c1−α)×Φ

−1(1− γ)
)

(B.34)

we choose r = c and s = c in lemma B.3. With probability tending to 1

|
√

n

(
G∗(c∗(1−α,1− γ))− (1−α +

d∗
1−γ

(c∗1−α
)

√
n

)

)
|

⩽
√

n
(

G∗(c∗(1−α,1− γ))−G∗
(

c∗(1−α,1− γ)− 1
n

))
< ξ

(B.35)

We choose a positive integer m > c+1. From (A.67) and lemma A.1, with probability tending to 1,

|S (c∗(1−α,1− γ))−S (c1−α)|⩽ sup
x∈[c,c]

|S (x)−S (c1−α)|

⩽ 2 sup
x∈[c,c]

|S (x)−
(

M̃m(
x+m

2m
)− M̃−

m (
−x+m

2m
)

)
|+2 sup

y,z∈[0,1],|y−z|⩽ c−c
2m

|M̃m(y)− M̃m(z)|

⇒ for ∀ξ > 0, limsup
n→∞

P(|S (c∗(1−α,1− γ))−S (c1−α)|> ξ )< ξ

(B.36)

For U is continuous and

|d∗
1−γ(c

∗
1−α)−

√
U (c1−α)×Φ

−1(1− γ)|

⩽ |d −
√

U (c1−α)Φ
−1(1− γ)|+ |d −

√
U (c1−α)Φ

−1(1− γ)|
(B.37)
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with probability tending to 1, we have for ∀ξ > 0,

lim
n→∞

P
(
|
√

n
(

P∗
(
|Y f −X T

f β̂ |⩽ c∗(1−α,1− γ)
)
− (1−α)

)
−
(
S (c1−α)+

√
U (c1−α)×Φ

−1(1− γ

)
|> ξ

)
= 0

(B.38)

On one hand, from theorem 4.2, ∀ξ > 0, we choose Z > 0 such that Φ

(
Z√

U (c1−α )

)
−Φ

(
− Z√

U (c1−α )

)
>

1−ξ , we have limn→∞ P(|S (c1−α)|⩽ Z)> 1−ξ . On the other hand, for any given ξ ∈ R,

lim
n→∞

P
(
S (c1−α)+

√
U (c1−α)×Φ

−1(1− γ)+ξ ⩾ 0
)
= 1−Φ

(
−Φ

−1(1− γ)− ξ√
U (c1−α)

)
(B.39)

Combine with (B.38), we prove theorem 5.2. □
Proof of corollary 5.1. From theorem 10.1 in [32] and assumption 3, define ε̃i and r̃i as in (3.2) and
(4.1), r̃i = ε̃i/(1− hi) with hi = X T

i (X T X )−1Xi, and ∃C > 0 such that hi ⩽ C/n for i = 1,2, ...,n.
From Cauchy inequality, for sufficiently large n

r̂i =
ε̂i

1−hi
+

1
n

n

∑
j=1

(hi −h j)ε̃ j

(1−hi)(1−h j)

⇒
n

∑
i=1

(r̂i − ε̂i)
2 ⩽

n

∑
i=1

2h2
i ε̂2

i
(1−hi)2 +

2
n2

n

∑
i=1

n

∑
j=1

(hi −h j)
2

(1−hi)2(1−h j)2

n

∑
j=1

ε̃
2
j ⩽

4C2

n2

n

∑
i=1

ε̂
2
i +

16C2

n2

n

∑
j=1

ε̃
2
j

⇒ E
n

∑
i=1

(r̂i − ε̂i)
2 ⩽

4C2

n2

n

∑
i=1

Eε̂
2
i +

16C2

n2

n

∑
j=1

Eε̃
2
j ⩽

20C2

n2 × (2nσ
2 +2σ

2
n

∑
i=1

X T
i (X T X )−1Xi)

(B.40)
We define a random vector (ε∗1 ,r

∗
1) ∈ R2 having probability mass 1/n on (ε̂i, r̂i), i = 1,2, ...,n. We

generate i.i.d. random variables (ε∗i ,r
∗
i ), i = 1,2, ...,n and (ε∗f ,ξ

∗) with the same distribution as (ε∗1 ,r
∗
1).

We denote ε∗ = (ε∗1 , ...,ε
∗
n )

T and r∗ = (r∗1, ...,r
∗
n)

T . For any given 0 < r < s < ∞,ξ > 0, we choose
δ =C/n3/4 in (A.3) with C a constant. Then define

G ∗(x) = P∗
(
|Y ∗

f −X T
f β̂

∗|⩽ x
)
, x ∈ R (B.41)

here we choose τ̂ = r̂ in algorithm 5.1. In other words, G ∗ plays the same role as G∗, and the only
difference is the mechanism for generating bootstrapped random variables.

sup
x∈[r,s]

|G∗(x)−G ∗(x)|⩽ P∗
(
| |ε∗f −X T

f (X T X )−1X T
ε
∗|− |r∗f −X T

f (X T X )−1X T r∗| |> C
n3/4

)
+ sup

x∈[r,s]
P∗
(

x− C
n3/4 < |ε∗f −X T

f (X T X )−1X T
ε
∗|⩽ x+

C
n3/4

)
⩽

4
√

n
C2

n

∑
i=1

(ε̂i − r̂i)
2

+
4X T

f (X T X /n)−1X f

C2√n
×

n

∑
i=1

(ε̂i − r̂i)
2 + sup

x∈[r,s]

(
G∗(x+

C
n3/4 )−G∗(x− C

n3/4 )

)
(B.42)
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and for sufficiently large n,

sup
x⩾r

|G ∗(x)− (F(x)−F(−x))|⩽ 4
√

n
C2

n

∑
i=1

(ε̂i − r̂i)
2 +

4X T
f (X T X /n)−1X f

C2√n
×

n

∑
i=1

(ε̂i − r̂i)
2

+3sup
x>0

|G∗(x)− (F(x)−F(−x))|+ sup
x⩾r

(
F(x+

C
n3/4 )−F(x− C

n3/4 )

)
+sup

x⩾r

(
F
(
−x+

C
n3/4

)
−F

(
−x− C

n3/4

)) (B.43)

Lemma B.3 and (B.29) imply limn→∞ P
(√

nsupx∈[r,s] |G∗(x)−G ∗(x)|> ξ

)
= 0; and

limn→∞ P
(
supx⩾r |G ∗(x)− (F(x)−F(−x))|> ξ

)
= 0.

We define F̂ (x) = 1
n ∑

n
i=1 1r̂i⩽x, and α̂(x) as in lemma A.2. For any given −∞ < r < s < ∞,ξ > 0,

and sufficiently large n, lemma A.2 implies

sup
x∈[r,s]

|F̂ (x)− F̂(x)|⩽ 1
n

n

∑
i=1

1|r̂i−ε̂i|> C
n3/4

+ sup
x∈[r,s]

1
n

n

∑
i=1

1x− C
n3/4 <ε̂i⩽x+ C

n3/4

⇒ P

(
√

n sup
x∈[r,s]

|F̂ (x)− F̂(x)|> ξ

)
⩽

2√
nξ

n

∑
i=1

P
(
|ε̂i − r̂i|>

C
n3/4

)

+P

(
sup

x∈[r−1,s+1]
|α̂(x)− α̂(x− 2C

n3/4 )|>
ξ

4

)

+P

(
sup

x∈[r−1,s+1]
F

′
(x)× 2C

n1/4 >
ξ

4

)
⇒ lim

n→∞
P

(
√

n sup
x∈[r,s]

|F̂ (x)− F̂(x)|> ξ

)
= 0

(B.44)

Here C is an arbitrary large positive constant.
We define M̂ and Ŝ as in (5.6); define Λ(z) =X T

f (X T X )−1X T z− 1
n ∑

n
i=1 zi,∀z = (z1, ...,zn)

T ∈
Rn; and define

N̂ (x) =
√

nF̂ (x+Λ(u∗))− 1√
n

n

∑
i=1

1u∗i ⩽x, T̂ (x) = N̂ (x)− N̂ −(−x) (B.45)

Here u∗ = (u∗1, ...,u
∗
n)

T are i.i.d. random variables generated by drawing from r̂ with replacement. For
any given 0 < r < s < ∞ and ξ > 0,

P∗

(
sup

x∈[r,s]
|Ŝ (x)− T̂ (x)|> 4ξ

)
⩽ P∗

(
sup

x∈[r,s]
|M̂ (x)− N̂ (x)|> 2ξ

)
+P∗

(
sup

x∈[r,s]
|M̂−(−x)− N̂ −(−x)|> 2ξ

)

⩽ P∗

(
sup

x∈[r,s]

√
n|F̂(x+Λ(ε∗))− F̂ (x+Λ(u∗))|> ξ

)
+P∗

(
sup

x∈[r,s]
| 1√

n

n

∑
i=1

1e∗i ⩽x −
1√
n

n

∑
i=1

1u∗i ⩽x|> ξ

)

+P∗

(
sup

x∈[r/2,s+1]

√
n|F̂(−x+Λ(ε∗))− F̂ (−x+Λ(u∗))|> ξ

)
+P∗

(
sup

x∈[r/2,s+1]
| 1√

n

n

∑
i=1

1e∗i ⩽−x −
1√
n

n

∑
i=1

1u∗i ⩽−x|> ξ

)
(B.46)
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If supx∈[−s−2,s+2]
√

n|F̂ (x)− F̂(x)| < ξ/4 and supx,y∈[−s−2,s+2],|x−y|<δ |α̂(x)− α̂(y)| ⩽ ξ/8 with 0 <
δ < 1/8,

P∗

(
sup

x∈[r,s]

√
n|F̂(x+Λ(ε∗))− F̂ (x+Λ(u∗))|> ξ

)
,P∗

(
sup

x∈[r/2,s+1]

√
n|F̂(−x+Λ(ε∗))− F̂ (−x+Λ(u∗))|> ξ

)

⩽ P∗

(
sup

x∈[−s−1,s+1]

√
n|F̂(x+Λ(ε∗))− F̂(x+Λ(u∗))|> ξ/2

)
+P∗

(
sup

x∈[−s−1,s+1]

√
n|F̂(x+Λ(u∗))− F̂ (x+Λ(u∗))|> ξ/2

)

⩽ P∗

(
sup

x∈[−s−1,s+1]
|α̂(x+Λ(ε∗))− α̂(x+Λ(u∗))|> ξ/4

)
+P∗

(
sup

x∈[−s−1,s+1]

√
n|F(x+Λ(ε∗))−F(x+Λ(u∗))|> ξ/4

)

+P∗ (|Λ(u∗)|> 1)⩽ 2P∗(|Λ(ε∗)|> δ/4)+3P∗(|Λ(u∗)|> δ/4)+P∗

(
sup

x∈[−s−2,s+2]

√
n|F ′

(x)|× |Λ(ε∗)−Λ(u∗)|> ξ/4

)
(B.47)

For

E∗
Λ(ε∗)2 ⩽

2σ̂2

n

(
X T

f

(
X T X

n

)−1

X f +1

)

and E∗(Λ(u∗)−Λ(ε∗))2 ⩽
2
n

(
X T

f

(
X T X

n

)−1

X f +1

)
× 1

n

n

∑
i=1

(ε̂i − r̂i)
2

(B.48)

(A.5), (B.40), (B.44) and lemma A.2 imply limn→∞ P
(

P∗
(

supx∈[r,s]
√

n|F̂(x+Λ(ε∗))− F̂ (x+Λ(u∗))|> ξ

)
> ξ

)
=

0;
and limn→∞ P

(
P∗
(

supx∈[r/2,s+1]
√

n|F̂(−x+Λ(ε∗))− F̂ (−x+Λ(u∗))|> ξ

)
> ξ

)
= 0. On the other

hand, we define α̃∗ as in lemma A.2; from (A.3), for any 0 < δ < 1/4,

P∗

(
sup

x∈[r,s]
| 1√

n

n

∑
i=1

1e∗i ⩽x −
1√
n

n

∑
i=1

1u∗i ⩽x|> ξ

)
,P∗

(
sup

x∈[r/2,s+1]
| 1√

n

n

∑
i=1

1e∗i ⩽−x −
1√
n

n

∑
i=1

1u∗i ⩽−x|> ξ

)

⩽ P∗

(
1√
n

n

∑
i=1

1|e∗i −u∗i |>
δ√
n
> ξ/2

)
+P∗

(
sup

x∈[−s−1,s+1]

1√
n

n

∑
i=1

1x− δ√
n<e∗i ⩽x+ δ√

n
> ξ/2

)

⩽
2
√

n
ξ

P∗
(
|e∗1 −u∗1|>

δ√
n

)
+P∗

(
sup

x∈[−s−2,s+2]
|α̃∗(x)− α̃

∗(x− 2δ√
n
)|> ξ/4

)

+P∗

(
sup

x∈[−s−1,s+1]

√
n|F̂(x)− F̂(x− 2δ√

n
)|> ξ/4

)
(B.49)

Since P∗
(
|e∗1 −u∗1|>

δ√
n

)
⩽ ∑

n
i=1(ε̂i−r̂i)

2

δ 2 , (B.40) and lemma A.2 imply

limn→∞ P
(

P∗
(

supx∈[r,s] | 1√
n ∑

n
i=1 1e∗i ⩽x − 1√

n ∑
n
i=1 1u∗i ⩽x|> ξ

)
> ξ

)
= 0;

and limn→∞ P
(

P∗
(

supx∈[r/2,s+1] | 1√
n ∑

n
i=1 1e∗i ⩽−x − 1√

n ∑
n
i=1 1u∗i ⩽−x|> ξ

)
> ξ

)
= 0. In particular, ∀ξ >

0,

lim
n→∞

P

(
P∗

(
sup

x∈[r,s]
|Ŝ (x)− T̂ (x)|> ξ

)
> ξ

)
= 0 (B.50)
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For ∀ξ > 0,

sup
x∈[r,s],y∈R

|P∗
(
T̂ (x)⩽ y

)
−Φ

(
y√

U (x)

)
|⩽ P∗

(
sup

x∈[r,s]
|Ŝ (x)− T̂ (x)|> ξ

)

+3 sup
x∈[r,s],y∈R

|P∗
(
Ŝ (x)⩽ y

)
−Φ

(
y√

U (x)

)
|+ sup

x∈[r,s],y∈R

(
Φ

(
y+ξ√
U (x)

)
−Φ

(
y−ξ√
U (x)

))
(B.51)

Lemma B.2 implies limn→∞ P
(

supx∈[r,s],y∈R |P∗
(
T̂ (x)⩽ y

)
−Φ

(
y√

U (x)

)
|> ξ

)
= 0.

Suppose 1
8 min(α,1−α) > ξ > 0. From (B.5) and (B.51), with probability tending to 1, ∀2ξ <

1− γ < 1− ξ ,r ⩽ x ⩽ s,
√

U (x)×Φ−1(1− γ − 2ξ ) ⩽ D∗
1−γ

(x) ⩽
√

U (x)×Φ−1(1− γ + ξ ). We
define cz,z ∈ (0,1) and d,d as in the proof of theorem 5.2. We choose r = c(1−α)/8 > 0 in (B.43), with
probability tending to 1, cτ−2ξ ⩽C∗

τ ⩽ cτ+ξ ,∀(1−α)/8+2ξ < τ < 1−2ξ . In particular, this implies
c1−α−2ξ ⩽ C∗

1−α
⩽ c1−α+ξ , and d ⩽ D∗

1−γ
(C∗

1−α
) ⩽ d. We choose r = c(1−α)/8 and s = c1−α+4ξ in

(B.42) and lemma B.3, C∗(1−α,1− γ)⩽C∗
1−α+ d√

n

⩽ c∗
1−α+ d+2ξ√

n

; and C∗(1−α,1− γ)⩾C∗
1−α+ d√

n

⩾

c∗
1−α+ d−3ξ√

n

. We define S and U as in (4.2) and (3.4), since

|
√

n
(

P∗
(
|Y f −X T

f β̂ |⩽C∗(1−α,1− γ)
)
− (1−α)

)
−
(
S (c1−α)+

√
U (c1−α)×Φ

−1(1− γ)
)
|

⩽ |
√

n

(
P∗

(
|Y f −X T

f β̂ |⩽ c∗
1−α+ d+2ξ√

n

)
− (1−α)

)
−
(
S (c1−α)+

√
U (c1−α)×Φ

−1(1− γ)
)
|

+|
√

n
(

P∗
(
|Y f −X T

f β̂ |⩽ c∗
1−α+ d−3ξ√

n

)
− (1−α)

)
−
(
S (c1−α)+

√
U (c1−α)×Φ

−1(1− γ)
)
|

(B.52)
Replace c∗(1−α,1− γ) in (B.34) to (B.36) by c∗

1−α+ d+2ξ√
n

and c∗
1−α+ d−3ξ√

n

, and set ξ → 0, we prove

(5.10). □

C. Results used in the paper

This paper uses many results from the stochastic process and some results from the optimal transport.
Statisticians may not be familiar with them. To make the paper self-contained, this section quotes the
frequently used theorems from textbooks and papers. However, we cannot explain the background of
each theorem in detail. So we encourage the readers to look through those materials if possible.

LEMMA C.1 (theorem 13.5, Billingsley [6]) Suppose that

(Xn
t1 , ...,X

n
tk)→L (Xt1 , ...,Xtk) (C.1)

for any points ti; that
X1 −X1−δ →L 0 as δ → 0,δ > 0 (C.2)

and that for any r ⩽ s ⩽ t, n ⩾ 1, λ > 0,

P[|Xn
s −Xn

r |∧ |Xn
t −Xn

s |⩾ λ ]⩽
1

λ 4β
[F(t)−F(r)]2α (C.3)
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where β ⩾ 0, α > 1/2 and F is a non-decreasing, continuous function on [0,1]. Then Xn →L X

LEMMA C.2 (theorem 13.6, Billingsley [6]) There exists in D(see section 3) a random element with
finite-dimensional distributions µt1...tk , provided these distributions are consistent(i.e., satisfy the con-
sistency conditions of Kolmogorov’s existence theorem); provided that, for t1 ⩽ t ⩽ t2,

µt1tt2 [(u1,u,u2) : |u−u1|∧ |u2 −u|⩾ λ ]⩽
1

λ 4β
(F(t2)−F(t1))2α (C.4)

where β ⩾ 0, α > 1/2, and F is a non-decreasing, continuous function on [0,1]; and provided that

lim
h→0,h>0

µt,t+h[(u1,u2) : |u2 −u1|⩾ ε] = 0, 0 ⩽ t ⩽ 1 (C.5)

LEMMA C.3 (theorem 2.3 in Hahn [14]) Let f be a nonnegative function on [0,1] which is nondecreas-
ing in a neighborhood of 0. Let X(t) be a stochastic process such that for some r ⩾ 1, E|X(t)−X(s)|r ⩽
f (|t − s|). If ∫

0
y−(r+1)/r f 1/r(y)dy < ∞ (C.6)

then there exists a nondecreasing functin φ on [0,1] with φ(0) = 0, which depends only on f , and a
random variable A such that E|A|r < ∞ and

|X̃(s)− X̃(t)|⩽ Aφ(|t − s|) (C.7)

Moreover, ∥A∥r is bounded above by a constant depending only on f and φ . Here X̃ is a separable
version of X .

LEMMA C.4 (3.8, page 348 in Jacod and Shiryaev [17]) Assume that Xn →L X and that P(X ∈C) = 1,
where C is the continuity set of the function h : E → E

′
. Then

i. If E
′
= R and h is bounded, then Eh(Xn)→ Eh(X);

ii. If E
′

is Polish, then h(Xn)→L h(X).

LEMMA C.5 (theorem 3.1 in Rao [30]) Let A be a class of continuous functions possessing the follow-
ing properties: 1. A is uniformly bounded, i.e., ∃ a constant M > 0 such that | f (x)|⩽ M for all f ∈ A
and all x; 2. A is equi-continuous. If µn,µ satisfies µn →L µ , then

lim
n→∞

sup
f∈A

|
∫

f dµn −
∫

f dµ|= 0 (C.8)

LEMMA C.6 (theorem 6.2.1 in Koul [18]) Suppose that the model Y =X β +ε holds true. In addition
suppose (X T X )−1 exists, maxi=1,...,n X T

i (X T X )−1Xi = o(1) and F has uniform continuous density
f . Suppose β̂ is an estimator of β satisfying

|A−1(β̂ −β )|2 = Op(1) (C.9)

then
sup

t∈[0,1]
|W1(t, β̂ )−W1(t,β )−q0(t)

√
n×X

T
n AA−1(β̂ −β )|= op(1) (C.10)

here q0(t)= f (F−1(t)), W1(t,s)=
√

n(Hn(F−1(t),s)−t), Hn(y,s)= 1
n ∑

n
i=1 1Yi⩽y+X T

i s and A=(X T X )−1/2.
| · |2 is the vector 2 norm in the Euclidean space.
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LEMMA C.7 (theorem 6.9, Villani [41]) Let (X ,d) be a Polish space, and p ∈ [1,∞). Define Pp(X )
as the Borel probability measure on X with finite moments of order p. Then the Wasserstein distance
Wp metrizes the weak convergence. In other words, if (µk)k∈N ⊂ Pp(X ) is a sequence of measures
and µ ∈ P(X ) is another Borel probability measure on X , then the statement µk converges weakly in
Pp(X ) to µ and Wp(µk,µ)→ 0 are equivalent. Here Wp(µk,µ) is the Wasserstein distance(see lemma
B.1). The weakly convergence in Pp(X ) means ∃x0 ∈ X such that

µk →L µ and
∫

d(x0,x)pdµk →
∫

d(x0,x)pdµ (C.11)


