Supplement to Estimating the spectral density at frequencies near zero

Tucker S. McElroy*
and Dimitris N. Politis^{†‡}

May 17, 2022

Disclaimer This report is released to inform interested parties of research and to encourage discussion. The views expressed on statistical issues are those of the author and not those of the U.S. Census Bureau.

 ^{*}Research and Methodology Directorate, U.S. Census Bureau, 4600 Silver Hill Road, Washington, D.C. 20233-9100, tucker.s.mcelroy@census.gov

[†]Department of Mathematics and Halicioglu Data Science Institute, University of California, San Diego, La Jolla, CA 92093-0112, dpolitis@ucsd.edu

[‡]Research partially supported by NSF grant DMS 19-14556.

Appendix A The Polynomial Gaussian Process

Here we discuss the construction of the nonlinear process defined in Terdik and Meaux (1991), and present new results on its spectral density. Let $\Psi(z) = \sum_{j \in \mathbb{Z}} \psi_j z^j$ and $\Psi(z, y) = \sum_{j,k \in \mathbb{Z}} \psi_{j,k} z^j y^k$, and let $\{\epsilon_t\}$ be a stationary time series of inputs, with mean zero and polyspectra $g_2(z)$, $g_3(z, y)$, and $g_4(z, y, x)$. Let the corresponding autocumulants be denoted γ_{h_1} , γ_{h_1,h_2} , and γ_{h_1,h_2,h_3} , where

$$g_2(z) = \sum_{h_1 \in \mathbb{Z}} \gamma_{h_1} z^{h_1}, \quad g_3(z, y) = \sum_{h_1, h_2 \in \mathbb{Z}} \gamma_{h_1, h_2} z^{h_1} y^{h_2}, \quad g_4(z, y, x) = \sum_{h_1, h_2, h_3 \in \mathbb{Z}} \gamma_{h_1, h_2, h_3} z^{h_1} y^{h_2} x^{h_3}.$$

Then define the stationary process $\{X_t\}$ via

$$X_t = \sum_{j \in \mathbb{Z}} \psi_j \,\epsilon_{t-j} + \sum_{j,k \in \mathbb{Z}} \psi_{j,k} \,(\epsilon_{t-j}\epsilon_{t-k} - \gamma_{k-j}). \tag{A.1}$$

This is an example of a polynomial process, and when the inputs are Gaussian it is called a Hermite process of order 2. Let the polyspectra be denoted $f_2(z)$, $f_3(z, y)$, and $f_4(z, y, x)$. Although Terdik and Meaux (1991) derive $f_2(z)$, the presentation of the result leaves the effect of $\Psi(z)$ and $\Psi(z, y)$ somewhat opaque; below, we generalize their result, as they considered the special case of ϵ_t being i.i.d. Gaussian. We use the shorthand $\langle g(z) \rangle_z$ for $(2\pi)^{-1} \int_{-\pi}^{\pi} g(e^{-i\lambda} d\lambda)$.

Proposition A.1 The polynomial process defined via (A.1) has spectral density

$$\begin{split} f_2(z) &= \Psi(z)\Psi(z^{-1}) \, g_2(z) + \Psi(z) \, \langle \Psi(z^{-1}y, y^{-1}) g_3(z^{-1}y, y^{-1}) \rangle_y + \Psi(z^{-1}) \, \langle \Psi(zy^{-1}, y) g_3(zy^{-1}, y) \rangle_y \\ &+ g_2(z) \langle \left(\Psi(zy^{-1}, y) + \Psi(y, zy^{-1}) \right) \, \Psi(z^{-1}y, y^{-1}) g_2(y) \rangle_y \\ &+ \langle \langle \Psi(y^{-1}z, y) \Psi(z^{-1}z, z^{-1}) g_4(y, z^{-1}x, x^{-1}) \rangle_y \rangle_x. \end{split}$$

Remark A.1 In the case of i.i.d. Gaussian inputs with variance σ^2 , and with $\Psi(z, y) = \Upsilon(zy)$ for some power series $\Upsilon(x)$, the spectral density in Proposition A.1 simplifies to

$$f_2(z) = \Psi(z)\Psi(z^{-1})\,\sigma^2 + 2\,\Upsilon(z)\Upsilon(z^{-1})\,\sigma^4.$$

Proof of Proposition A.1. We use the spectral representation: with $\mathcal{Z}(z)$ denoting the orthogonal increments process corresponding to $\{\epsilon_t\}$, we have

$$X_t^{(1)} = \sum_{j \in \mathbb{Z}} \psi_j \,\epsilon_{t-j} = \int z^{-t} \Psi(z) \, d\mathcal{Z}(z)$$
$$X_t^{(2)} = \sum_{j,k \in \mathbb{Z}} \psi_{j,k} \epsilon_{t-j} \epsilon_{t-k} = \int \int (zy)^{-t} \Psi(z,y) \, d\mathcal{Z}(z) d\mathcal{Z}(y),$$

and $X_t = X_t^{(1)} + X_t^{(2)} - EX_t^{(2)}$. Next,

$$\operatorname{Cov}[X_t, X_{t-h}] = \operatorname{Cum}[X_t^{(1)}, X_{t-h}^{(1)}] + \operatorname{Cum}[X_t^{(1)}, X_{t-h}^{(2)}] + \operatorname{Cum}[X_t^{(2)}X_{t-h}^{(1)}] + \operatorname{Cum}[X_t^{(2)}X_{t-h}^{(2)}] + \operatorname{Cum}[X_t^{(2)}X_{t-h}^{(2)}X_{t-h}^{(2)}] + \operatorname{Cum}[X_t^{(2)}X_{t-h}^$$

Each of these four terms can be computed using Theorem 4.6.1 of Brillinger (1982). Letting Δ denote the Dirac functional,

$$\begin{aligned} \operatorname{Cum}[X_{t}^{(1)}, X_{t-h}^{(1)}] &= \int \int z_{1}^{-t} z_{2}^{h-t} \Psi(z_{1}) \Psi(z_{2}) \operatorname{Cum}[d\mathcal{Z}(z_{1}), d\mathcal{Z}(z_{2})] \\ &= \int \int z_{1}^{-t} z_{2}^{h-t} \Psi(z_{1}) \Psi(z_{2}) \Delta(z_{1}z_{2}) g_{2}(z_{1}) dz_{1}/(2\pi) \\ &= \langle z_{1}^{-h} \Psi(z_{1}) \Psi(z_{1}^{-1}) g_{2}(z_{1}) \rangle_{z_{1}} \\ \operatorname{Cum}[X_{t}^{(1)}, X_{t-h}^{(2)}] &= \int \int \int z_{1}^{-t} (z_{2}y_{2})^{h-t} \Psi(z_{1}) \Psi(z_{2}, y_{2}) \operatorname{Cum}[d\mathcal{Z}(z_{1}), d\mathcal{Z}(z_{2}) d\mathcal{Z}(y_{2})] \\ &= \int \int \int z_{1}^{-t} (z_{2}y_{2})^{h-t} \Psi(z_{1}) \Psi(z_{2}, y_{2}) \Delta(z_{1}z_{2}y_{2}) g_{3}(z_{2}, y_{2}) dz_{2} dy_{2}/(2\pi)^{2} \\ &= \langle \langle (z_{2}y_{2})^{-h} \Psi(z_{2}y_{2}) \Psi(z_{2}^{-1}, y_{2}^{-1}) g_{3}(z_{2}^{-1}, y_{2}^{-1}) \rangle_{z_{2}} \rangle_{y_{2}} \\ \operatorname{Cum}[X_{t}^{(2)}, X_{t-h}^{(1)}] &= \int \int \int (z_{1}y_{1})^{-t} z_{2}^{h-t} \Psi(z_{1}, y_{1}) \Psi(z_{2}) \operatorname{Cum}[d\mathcal{Z}(z_{1}) d\mathcal{Z}(y_{1}), d\mathcal{Z}(z_{2})] \\ &= \int \int \int (z_{1}y_{1})^{-t} z_{2}^{h-t} \Psi(z_{1}, y_{1}) \Psi(z_{2}) \Delta(z_{1}y_{1}z_{2}) g_{3}(z_{1}, y_{1}) dz_{1} dy_{1}/(2\pi)^{2} \\ &= \langle \langle (z_{1}y_{1})^{-h} \Psi(z_{1}, y_{1}) \Psi(z_{1}^{-1}y_{1}^{-1}) g_{3}(z_{1}, y_{1}) \rangle_{z_{1}} \rangle_{y_{1}} \\ \operatorname{Cum}[X_{t}^{(2)}, X_{t-h}^{(2)}] &= \int \int \int (z_{1}y_{1})^{-t} (z_{2}y_{2})^{h-t} \Psi(z_{1}, y_{1}) \Psi(z_{2}, y_{2}) \operatorname{Cum}[d\mathcal{Z}(z_{1}) d\mathcal{Z}(y_{1}), d\mathcal{Z}(z_{2}) d\mathcal{Z}(y_{2})]. \end{aligned}$$

Considering the indecomposable partitions of a 2×2 table, we find that

$$\begin{aligned} \operatorname{Cum}[d\mathcal{Z}(z_1)d\mathcal{Z}(y_1), d\mathcal{Z}(z_2)d\mathcal{Z}(y_2)] &= \Delta(z_1z_2)\Delta(y_1y_2)g_2(z_2)g_2(y_2)/(2\pi)^2 \\ &+ \Delta(z_1y_2)\Delta(y_1z_2)g_2(y_2)g_2(z_2)/(2\pi)^2 \\ &+ \Delta(z_1y_1z_2y_2)g_4(y_1, z_2, y_2)/(2\pi)^3. \end{aligned}$$

Thus,

$$\operatorname{Cum}[X_t^{(2)}, X_{t-h}^{(2)}] = \langle \langle (z_2 y_2)^{-h} (\Psi(z_2, y_2) + \Psi(y_2, z_2)) \Psi(z_2^{-1}, y_2^{-1}) g_2(z_2) g_2(y_2) \rangle_{z_2} \rangle_{y_2} \\ + \langle \langle (z_2 y_2)^{-h} \langle \Psi(y_1^{-1} z_2 y_2, y_1) \Psi(z_2^{-1}, y_2^{-1}) g_4(y_1, z_2^{-1}, y_2^{-1}) \rangle_{y_1} \rangle_{z_2} \rangle_{y_2}.$$

Gathering terms, and making a change of variable yields

$$\begin{aligned} \operatorname{Cov}[X_t, X_{t-h}] &= \langle z_1^{-h} \Psi(z_1) \Psi(z_1^{-1}) g_2(z_1) \rangle_{z_1} \\ &+ \langle z_2^{-h} \langle \Psi(z_2) \Psi(z_2^{-1} y_2, y_2^{-1}) g_3(z_2^{-1} y_2, y_2^{-1}) \rangle_{y_2} \rangle_{z_2} \\ &+ \langle z_1^{-h} \langle \Psi(z_1 y_1^{-1}, y_1) \Psi(z_1^{-1}) g_3(z_1 y_1^{-1}, y_1) \rangle_{y_1} \rangle_{z_1} \\ &+ \langle z_2^{-h} \langle \left(\Psi(z_2 y_2^{-1}, y_2) + \Psi(y_2, z_2 y_2^{-1}) \right) \Psi(z_2^{-1} y_2, y_2^{-1}) g_2(z_2) g_2(y_2) \rangle_{y_2} \rangle_{z_2} \\ &+ \langle z_2^{-h} \langle \langle \Psi(y_1^{-1} z_2, y_1) \Psi(z_2^{-1} y_2, y_2^{-1}) g_4(y_1, z_2^{-1} y_2, y_2^{-1}) \rangle_{y_1} \rangle_{y_2} \rangle_{z_2}. \end{aligned}$$

Now summing against z^h , the final result is obtained. q.e.d.

We construct a simulation using the setting of Remark A.1, taking $\Psi(z) = (1 - \phi_1 z)^{-1}$ and $\Upsilon(z) = (1 - \phi_2 z)^{-1}$. This generates a spectral density

$$f_2(z) = \frac{\sigma^2}{(1-\phi_1 z)(1-\phi_1 z^{-1})} + \frac{2\sigma^4}{(1-\phi_2 z)(1-\phi_2 z^{-1})}.$$

The coefficients of the polynomial Gaussian process are

$$\psi_j = \phi_1^j \mathbf{1}_{\{j \ge 0\}}, \quad \psi_{j,k} = \phi_2^j \mathbf{1}_{\{j=k,j \ge 0\}}.$$

Hence, it is straightforward to construct a simulation of this process, and the spectral density will resemble that of the sum of two independent AR(1) processes.

Appendix B Supplementary Tables and Figures

B.1 Gaussian Process

Results are based on simulations of 25 Gaussian ARMA processes described in the main paper. For the tables, the Local quadratic estimator $\tilde{f}(\theta)$ is computed via OLS using the data-based optimal bandwidth $\hat{\delta}_*$, which is determined by using the Flat-top tapered spectral estimator. For the figures, a range of fixed δ values are used, letting this quantity range from .005 to .250 in 50 increments.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.173	0.326	0.369	0.038	0.048	0.061	0.009	0.013	0.016
Flat-top taper	0.103	0.596	0.605	0.063	0.190	0.200	0.021	0.071	0.074
Local $(\widehat{\delta}_*)$	0.102	0.312	0.328	0.012	0.094	0.094	-0.003	0.035	0.035

Table B.1: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-126.897	219.219	253.298	-46.075	237.282	241.714	-27.932	144.416	147.092	
Flat-top taper	-60.912	318.191	323.969	21.666	331.520	332.227	14.033	176.189	176.747	
Local $(\widehat{\delta}_*)$	-160.586	181.526	242.362	-75.435	198.617	212.460	-35.548	131.383	136.107	

Table B.2: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.067	0.230	0.239	-0.005	0.066	0.066	-0.006	0.040	0.041
Flat-top taper	0.016	0.382	0.383	0.019	0.132	0.133	0.004	0.059	0.059
Local $(\widehat{\delta}_*)$	0.048	0.219	0.224	0.001	0.075	0.075	-0.008	0.036	0.037

Table B.3: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-75.823	136.892	156.488	-31.727	135.955	139.608	-14.727	96.877	97.990	
Flat-top taper	-35.421	199.037	202.164	7.170	188.187	188.323	10.930	120.639	121.133	
Local $(\widehat{\delta}_*)$	-95.925	113.872	148.891	-48.599	114.144	124.059	-20.040	85.844	88.152	

Table B.4: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.056	0.230	0.237	-0.051	0.154	0.162	-0.022	0.098	0.100
Flat-top taper	-0.094	0.281	0.296	-0.043	0.166	0.171	-0.018	0.106	0.108
Local $(\widehat{\delta}_*)$	-0.014	0.206	0.206	-0.034	0.108	0.114	-0.028	0.072	0.078

Table B.5: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-39.882	68.918	79.625	-14.695	70.351	71.869	-8.515	45.978	46.760	
Flat-top taper	-19.952	100.171	102.139	5.509	97.685	97.840	4.123	56.955	57.104	
Local $(\widehat{\delta}_*)$	-49.833	57.371	75.992	-23.619	58.651	63.228	-11.210	41.929	43.402	

Table B.6: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.159	0.316	0.353	-0.113	0.256	0.280	-0.047	0.176	0.182
Flat-top taper	-0.214	0.372	0.430	-0.109	0.285	0.306	-0.041	0.189	0.193
Local $(\widehat{\delta}_*)$	-0.086	0.276	0.289	-0.073	0.181	0.195	-0.046	0.117	0.126

Table B.7: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-14.812	25.002	29.060	-5.791	25.181	25.838	-3.444	15.484	15.863	
Flat-top taper	-8.386	35.917	36.883	0.644	34.284	34.290	0.595	18.705	18.714	
Local $(\widehat{\delta}_*)$	-18.102	20.889	27.642	-9.022	20.922	22.785	-4.509	14.224	14.921	

Table B.8: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.050	0.307	0.311	0.042	0.226	0.230	-0.012	0.159	0.159
Flat-top taper	0.038	0.344	0.346	0.031	0.259	0.261	-0.020	0.181	0.182
Local $(\widehat{\delta}_*)$	-0.143	0.329	0.358	-0.097	0.185	0.209	-0.029	0.121	0.124

Table B.9: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.552	1.787	3.115	-2.236	1.627	2.765	-1.415	1.255	1.891
Flat-top taper	-2.460	2.308	3.373	-2.202	1.833	2.865	-1.502	1.287	1.978
Local $(\widehat{\delta}_*)$	-2.399	1.628	2.899	-2.243	1.429	2.659	-1.630	1.119	1.977

Table B.10: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.087	0.177	0.198	0.048	0.136	0.144	0.010	0.030	0.031	
Flat-top taper	-0.444	0.731	0.856	0.056	0.256	0.262	-0.016	0.094	0.095	
Local $(\widehat{\delta}_*)$	0.033	0.132	0.136	0.003	0.050	0.050	-0.008	0.036	0.037	

Table B.11: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.570	7.624	8.045	-1.481	4.329	4.575	-0.835	2.458	2.596
Flat-top taper	-1.337	9.702	9.794	-0.690	4.941	4.989	-0.299	2.616	2.633
Local $(\widehat{\delta}_*)$	-3.457	6.688	7.529	-1.873	4.071	4.481	-0.939	2.334	2.516

Table B.12: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.016	0.139	0.140	0.034	0.138	0.142	0.012	0.060	0.061
Flat-top taper	-0.347	0.461	0.577	0.016	0.192	0.192	-0.010	0.070	0.071
Local $(\hat{\delta}_*)$	0.017	0.147	0.148	0.000	0.068	0.068	-0.007	0.038	0.039

Table B.13: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		<i>n</i> = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.702	4.477	4.790	-0.911	2.558	2.715	-0.510	1.426	1.514
Flat-top taper	-1.038	5.661	5.756	-0.473	2.916	2.954	-0.210	1.507	1.522
Local $(\widehat{\delta}_*)$	-2.200	3.983	4.550	-1.181	2.372	2.650	-0.585	1.344	1.466

Table B.14: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.005	0.336	0.336	0.002	0.158	0.158	0.023	0.100	0.102
Flat-top taper	-0.194	0.444	0.484	-0.087	0.210	0.227	0.006	0.081	0.081
Local $(\widehat{\delta}_*)$	-0.001	0.284	0.284	-0.006	0.133	0.134	-0.015	0.061	0.063

Table B.15: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.090	2.046	2.318	-0.584	1.188	1.324	-0.313	0.672	0.741
Flat-top taper	-0.851	2.491	2.633	-0.472	1.336	1.416	-0.223	0.703	0.738
Local $(\widehat{\delta}_*)$	-1.243	1.776	2.168	-0.772	1.117	1.358	-0.380	0.635	0.740

Table B.16: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.091	0.250	0.266	0.105	0.147	0.181	0.058	0.112	0.126
Flat-top taper	0.083	0.272	0.285	0.096	0.170	0.195	0.035	0.145	0.149
Local $(\widehat{\delta}_*)$	-0.042	0.293	0.296	-0.040	0.144	0.149	-0.029	0.071	0.076

Table B.17: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.388	0.401	0.558	-0.373	0.229	0.438	-0.291	0.198	0.352
Flat-top taper	-0.378	0.459	0.595	-0.370	0.239	0.441	-0.300	0.190	0.355
Local $(\widehat{\delta}_*)$	-0.246	0.451	0.514	-0.261	0.214	0.337	-0.249	0.133	0.282

Table B.18: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.328	0.387	0.507	-0.137	0.318	0.346	-0.024	0.166	0.168
Flat-top taper	-0.324	0.432	0.539	-0.065	0.387	0.393	0.047	0.213	0.218
Local $(\widehat{\delta}_*)$	0.056	0.471	0.474	0.059	0.273	0.279	0.002	0.156	0.156

Table B.19: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200	C	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.819	0.354	0.892	0.526	0.371	0.644	0.156	0.103	0.187
Flat-top taper	0.805	0.385	0.892	0.582	0.338	0.673	0.316	0.172	0.360
Local $(\widehat{\delta}_*)$	0.549	0.300	0.626	0.445	0.256	0.513	0.229	0.173	0.287

Table B.20: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200	0	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.212	0.440	0.489	0.020	0.027	0.033	0.006	0.012	0.014
Flat-top taper	0.128	0.526	0.542	0.006	0.158	0.158	0.002	0.079	0.080
Local $(\widehat{\delta}_*)$	0.136	0.305	0.334	0.010	0.047	0.048	0.003	0.017	0.018

Table B.21: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.405	1.347	1.406	-0.216	0.708	0.740	-0.139	0.362	0.388
Flat-top taper	-0.091	1.588	1.591	0.011	0.717	0.717	0.003	0.315	0.315
Local $(\widehat{\delta}_*)$	-0.320	1.175	1.217	-0.190	0.592	0.622	-0.105	0.300	0.318

Table B.22: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.364	0.451	0.579	0.029	0.128	0.131	0.014	0.056	0.058
Flat-top taper	0.306	0.509	0.595	0.004	0.146	0.146	0.000	0.063	0.063
Local $(\widehat{\delta}_*)$	0.186	0.305	0.357	0.026	0.128	0.131	0.009	0.057	0.058

Table B.23: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.406	0.782	0.881	-0.135	0.368	0.392	-0.080	0.201	0.216
Flat-top taper	-0.314	0.924	0.976	-0.007	0.368	0.368	0.001	0.170	0.170
Local $(\widehat{\delta}_*)$	-0.176	0.653	0.677	-0.119	0.312	0.334	-0.064	0.167	0.179

Table B.24: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.032	0.231	0.233	-0.007	0.109	0.109	-0.002	0.054	0.054
Flat-top taper	-0.035	0.244	0.246	-0.007	0.112	0.112	-0.002	0.054	0.054
Local $(\widehat{\delta}_*)$	-0.009	0.319	0.319	0.001	0.155	0.155	-0.001	0.076	0.076

Table B.25: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.017	0.242	0.243	-0.004	0.111	0.111	-0.002	0.053	0.053
Flat-top taper	-0.016	0.263	0.264	-0.004	0.115	0.115	-0.002	0.054	0.054
Local $(\widehat{\delta}_*)$	0.001	0.331	0.331	-0.001	0.155	0.155	-0.001	0.076	0.076

Table B.26: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.551	0.679	0.874	-0.163	0.387	0.420	-0.081	0.210	0.225
Flat-top taper	-0.507	0.755	0.910	-0.053	0.370	0.374	-0.011	0.167	0.168
Local $(\widehat{\delta}_*)$	-0.230	0.569	0.613	-0.130	0.314	0.340	-0.067	0.165	0.178

Table B.27: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.451	0.405	0.606	0.056	0.131	0.143	0.025	0.053	0.059
Flat-top taper	0.391	0.476	0.616	0.018	0.152	0.153	0.003	0.064	0.064
Local $(\widehat{\delta}_*)$	0.174	0.261	0.314	0.026	0.128	0.131	0.008	0.056	0.056

Table B.28: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.709	1.163	1.361	-0.284	0.695	0.750	-0.139	0.378	0.403
Flat-top taper	-0.483	1.291	1.378	-0.081	0.654	0.659	-0.017	0.307	0.308
Local $(\widehat{\delta}_*)$	-0.463	0.946	1.053	-0.222	0.557	0.599	-0.110	0.295	0.315

Table B.29: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.292	0.487	0.567	0.031	0.030	0.043	0.010	0.016	0.019
Flat-top taper	0.225	0.557	0.601	0.025	0.154	0.156	0.006	0.079	0.079
Local $(\widehat{\delta}_*)$	0.148	0.279	0.315	0.009	0.042	0.043	0.002	0.017	0.017

Table B.30: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200	0	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.812	0.390	0.901	0.486	0.386	0.620	0.127	0.090	0.155
Flat-top taper	0.803	0.410	0.902	0.570	0.335	0.661	0.317	0.172	0.361
Local $(\widehat{\delta}_*)$	0.619	0.346	0.709	0.456	0.261	0.525	0.235	0.174	0.292

Table B.31: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.251	0.452	0.518	-0.107	0.308	0.326	-0.019	0.156	0.157
Flat-top taper	-0.234	0.532	0.581	-0.027	0.388	0.389	0.056	0.210	0.217
Local $(\widehat{\delta}_*)$	0.059	0.492	0.496	0.061	0.266	0.273	0.001	0.155	0.155

Table B.32: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.438	0.291	0.526	-0.387	0.217	0.444	-0.295	0.203	0.358
Flat-top taper	-0.437	0.303	0.532	-0.388	0.214	0.444	-0.316	0.185	0.366
Local $(\widehat{\delta}_*)$	-0.305	0.371	0.480	-0.272	0.203	0.339	-0.255	0.131	0.286

Table B.33: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.097	0.237	0.256	0.113	0.134	0.176	0.072	0.105	0.128
Flat-top taper	0.093	0.260	0.277	0.105	0.157	0.189	0.047	0.140	0.147
Local $(\widehat{\delta}_*)$	-0.033	0.295	0.297	-0.038	0.143	0.148	-0.030	0.070	0.076

Table B.34: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.573	1.488	2.165	-0.691	1.137	1.330	-0.302	0.677	0.741
Flat-top taper	-1.531	1.599	2.214	-0.682	1.226	1.403	-0.265	0.679	0.729
Local $(\widehat{\delta}_*)$	-1.622	1.258	2.053	-0.884	1.074	1.391	-0.389	0.626	0.737

Table B.35: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.133	0.346	0.371	0.037	0.161	0.165	0.039	0.116	0.122
Flat-top taper	-0.094	0.474	0.483	-0.079	0.216	0.230	0.012	0.082	0.083
Local $(\widehat{\delta}_*)$	-0.001	0.278	0.278	-0.003	0.132	0.132	-0.013	0.061	0.063

Table B.36: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.791	3.183	4.234	-1.215	2.351	2.646	-0.559	1.405	1.513
Flat-top taper	-2.591	3.582	4.421	-0.976	2.556	2.736	-0.357	1.434	1.478
Local $(\widehat{\delta}_*)$	-3.043	2.981	4.260	-1.426	2.185	2.609	-0.650	1.310	1.463

Table B.37: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.066	0.176	0.188	0.060	0.170	0.180	0.022	0.075	0.079
Flat-top taper	-0.341	0.447	0.562	0.019	0.206	0.207	-0.005	0.072	0.072
Local $(\widehat{\delta}_*)$	0.023	0.137	0.139	0.000	0.064	0.064	-0.006	0.038	0.038

Table B.38: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-4.619	5.329	7.052	-2.026	4.041	4.521	-0.946	2.432	2.610
Flat-top taper	-4.230	6.061	7.391	-1.562	4.369	4.639	-0.578	2.486	2.552
Local $(\widehat{\delta}_*)$	-4.937	5.005	7.030	-2.301	3.706	4.362	-1.074	2.265	2.507

Table B.39: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.103	0.188	0.214	0.070	0.212	0.223	0.014	0.048	0.049
Flat-top taper	-0.485	0.690	0.844	0.061	0.271	0.278	-0.014	0.099	0.100
Local $(\widehat{\delta}_*)$	0.035	0.109	0.115	0.004	0.044	0.044	-0.008	0.036	0.037

Table B.40: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.920	0.592	2.979	-2.517	1.111	2.751	-1.471	1.241	1.925
Flat-top taper	-2.915	0.636	2.984	-2.544	1.109	2.775	-1.654	1.209	2.048
Local $(\widehat{\delta}_*)$	-2.816	0.573	2.873	-2.512	0.916	2.674	-1.740	1.083	2.050

Table B.41: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.070	0.248	0.257	0.075	0.180	0.195	0.009	0.148	0.148	
Flat-top taper	0.066	0.279	0.287	0.068	0.219	0.229	0.000	0.180	0.180	
Local $(\widehat{\delta}_*)$	-0.077	0.308	0.317	-0.087	0.171	0.192	-0.024	0.121	0.123	

Table B.42: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-27.245	8.605	28.572	-14.114	14.663	20.352	-5.857	12.711	13.995	
Flat-top taper	-26.169	10.423	28.168	-11.188	17.699	20.939	-3.063	14.367	14.690	
Local $(\widehat{\delta}_*)$	-27.462	8.984	28.894	-14.377	14.987	20.768	-6.101	12.401	13.821	

Table B.43: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.038	0.325	0.328	-0.002	0.240	0.240	-0.003	0.167	0.168
Flat-top taper	-0.025	0.433	0.434	0.010	0.288	0.289	0.003	0.193	0.193
Local $(\widehat{\delta}_*)$	-0.037	0.293	0.296	-0.021	0.184	0.186	-0.025	0.117	0.120

Table B.44: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-75.194	23.199	78.692	-38.713	39.337	55.191	-16.217	36.316	39.772
Flat-top taper	-71.163	28.405	76.622	-29.120	48.288	56.388	-7.485	41.580	42.248
Local $(\widehat{\delta}_*)$	-75.265	24.480	79.146	-38.420	40.595	55.893	-16.151	35.582	39.076

Table B.45: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.073	0.265	0.274	0.017	0.154	0.155	0.004	0.095	0.095
Flat-top taper	0.026	0.343	0.344	0.028	0.175	0.177	0.009	0.108	0.108
Local $(\widehat{\delta}_*)$	0.034	0.210	0.212	-0.002	0.108	0.108	-0.013	0.070	0.071

Table B.46: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-147.167	45.659	154.087	-75.840	79.586	109.935	-30.992	71.468	77.899
Flat-top taper	-138.823	55.966	149.679	-56.383	98.019	113.079	-13.223	81.932	82.993
Local $(\widehat{\delta}_*)$	-146.831	48.517	154.639	-74.806	82.201	111.144	-30.357	70.214	76.496

Table B.47: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.139	0.307	0.337	0.027	0.073	0.078	0.007	0.038	0.039	
Flat-top taper	0.108	0.447	0.459	0.056	0.140	0.151	0.017	0.058	0.061	
Local $(\widehat{\delta}_*)$	0.089	0.208	0.226	0.011	0.072	0.073	-0.002	0.033	0.033	

Table B.48: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200			n = 800	
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-242.617	76.934	254.523	-124.558	130.306	180.262	-53.635	117.282	128.964
Flat-top taper	-228.498	94.459	247.252	-92.141	160.428	185.006	-24.446	135.109	137.303
Local $(\widehat{\delta}_*)$	-241.707	82.041	255.251	-123.420	133.012	181.452	-52.729	115.251	126.740

Table B.49: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.224	0.465	0.516	0.045	0.083	0.094	0.011	0.013	0.017
Flat-top taper	0.165	0.677	0.696	0.092	0.203	0.223	0.028	0.074	0.079
Local $(\widehat{\delta}_*)$	0.142	0.280	0.314	0.019	0.091	0.093	-0.002	0.034	0.034

Table B.50: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

Figure B.1: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$.

Figure B.2: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$.

Figure B.3: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$.

Figure B.4: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$.

Figure B.5: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$.

Figure B.6: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$.

Figure B.7: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$.

Figure B.8: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$.

Figure B.9: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$.

Figure B.10: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$.

Figure B.11: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$.

Figure B.12: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$.

Figure B.13: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$.

Figure B.14: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$.

Figure B.15: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$.

Figure B.16: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$.

Figure B.17: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$.

Figure B.18: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$.

Figure B.19: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$.

Figure B.20: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$.

Figure B.21: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$.

Figure B.22: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$.

Figure B.23: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$.

Figure B.24: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$.

Figure B.25: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$.

Figure B.26: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$.

Figure B.27: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$.

Figure B.28: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$.

Figure B.29: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$.

Figure B.30: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$.

Figure B.31: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$.

Figure B.32: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$.

Figure B.33: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$.

Figure B.34: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$.

Figure B.35: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$.

Figure B.36: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$.

Figure B.37: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$.

Figure B.38: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$.

Figure B.39: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$.

Figure B.40: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$.

Figure B.41: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$.

Figure B.42: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$.

Figure B.43: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$.

Figure B.44: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$.

Figure B.45: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$.

Figure B.46: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$.

Figure B.47: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$.

Figure B.48: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$.

Figure B.49: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$.

Figure B.50: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Gaussian ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$.

B.2 Laplace Process

Results are based on simulations of 25 Laplace ARMA processes described in the main paper. For the tables, the Local quadratic estimator $\tilde{f}(\theta)$ is computed via OLS using the data-based optimal bandwidth $\hat{\delta}_*$, which is determined by using the Flat-top tapered spectral estimator. For the figures, a range of fixed δ values are used, letting this quantity range from .005 to .250 in 50 increments.

		n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.177	0.477	0.509	0.038	0.057	0.069	0.009	0.016	0.018	
Flat-top taper	0.101	0.625	0.633	0.063	0.195	0.204	0.019	0.072	0.075	
Local $(\widehat{\delta}_*)$	0.101	0.352	0.366	0.011	0.104	0.105	-0.003	0.037	0.037	

Table B.51: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-124.941	230.955	262.584	-47.257	235.564	240.257	-25.712	152.922	155.069	
Flat-top taper	-58.019	334.387	339.383	19.555	325.409	325.996	16.984	189.019	189.781	
Local $(\widehat{\delta}_*)$	-158.811	192.135	249.273	-76.209	196.687	210.935	-33.852	139.793	143.834	

Table B.52: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.067	0.220	0.230	-0.004	0.073	0.073	-0.005	0.042	0.042
Flat-top taper	0.029	0.405	0.406	0.017	0.135	0.136	0.005	0.059	0.059
Local $(\widehat{\delta}_*)$	0.051	0.246	0.251	0.000	0.080	0.080	-0.007	0.037	0.038

Table B.53: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-77.899	138.584	158.977	-29.353	137.129	140.236	-17.472	88.788	90.491	
Flat-top taper	-38.615	200.248	203.937	10.400	187.945	188.233	7.505	107.679	107.940	
Local $(\widehat{\delta}_*)$	-97.544	115.570	151.232	-46.984	114.071	123.368	-22.375	81.606	84.618	

Table B.54: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.055	0.236	0.242	-0.052	0.149	0.158	-0.023	0.098	0.100
Flat-top taper	-0.095	0.301	0.316	-0.045	0.170	0.176	-0.018	0.107	0.108
Local $(\widehat{\delta}_*)$	-0.016	0.222	0.222	-0.036	0.114	0.120	-0.028	0.072	0.078

Table B.55: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-39.744	73.619	83.662	-14.792	71.292	72.811	-8.616	46.547	47.338	
Flat-top taper	-19.916	106.215	108.066	5.143	97.861	97.996	3.941	56.590	56.727	
Local $(\widehat{\delta}_*)$	-49.613	61.478	79.000	-23.767	59.389	63.968	-11.095	42.442	43.868	

Table B.56: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.161	0.334	0.371	-0.109	0.261	0.283	-0.045	0.182	0.187
Flat-top taper	-0.209	0.387	0.439	-0.103	0.287	0.305	-0.040	0.194	0.198
Local $(\widehat{\delta}_*)$	-0.082	0.303	0.314	-0.068	0.189	0.201	-0.045	0.123	0.131

Table B.57: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-14.920	25.246	29.325	-6.267	24.670	25.454	-3.624	15.549	15.966
Flat-top taper	-8.601	35.994	37.008	-0.034	33.175	33.175	0.384	18.646	18.650
Local $(\widehat{\delta}_*)$	-18.130	21.105	27.823	-9.362	20.794	22.805	-4.710	14.279	15.036

Table B.58: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.048	0.384	0.387	0.045	0.244	0.248	-0.010	0.169	0.169
Flat-top taper	0.039	0.413	0.415	0.032	0.273	0.275	-0.018	0.190	0.190
Local $(\widehat{\delta}_*)$	-0.146	0.379	0.406	-0.099	0.201	0.224	-0.027	0.132	0.135

Table B.59: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.578	1.586	3.027	-2.245	1.557	2.733	-1.420	1.263	1.900
Flat-top taper	-2.500	1.964	3.179	-2.218	1.711	2.801	-1.508	1.290	1.985
Local $(\widehat{\delta}_*)$	-2.419	1.491	2.842	-2.245	1.360	2.625	-1.630	1.140	1.989

Table B.60: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.088	0.178	0.198	0.050	0.141	0.150	0.009	0.032	0.033
Flat-top taper	-0.457	0.767	0.893	0.062	0.250	0.258	-0.016	0.096	0.097
Local $(\widehat{\delta}_*)$	0.033	0.138	0.142	0.003	0.051	0.051	-0.009	0.039	0.040

Table B.61: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.786	7.602	8.096	-1.401	4.760	4.962	-0.828	2.548	2.679
Flat-top taper	-1.622	9.467	9.605	-0.579	5.501	5.531	-0.292	2.722	2.737
Local $(\widehat{\delta}_*)$	-3.636	6.726	7.646	-1.803	4.415	4.769	-0.936	2.426	2.600

Table B.62: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.020	0.160	0.162	0.034	0.133	0.137	0.011	0.057	0.058
Flat-top taper	-0.345	0.477	0.589	0.017	0.195	0.195	-0.011	0.071	0.072
Local $(\widehat{\delta}_*)$	0.020	0.159	0.160	0.000	0.071	0.071	-0.007	0.041	0.041

Table B.63: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.735	4.599	4.915	-0.898	2.797	2.938	-0.498	1.490	1.571
Flat-top taper	-1.073	5.703	5.803	-0.457	3.188	3.220	-0.200	1.581	1.594
Local $(\widehat{\delta}_*)$	-2.223	4.128	4.689	-1.172	2.544	2.801	-0.576	1.420	1.532

Table B.64: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		<i>n</i> = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.006	0.357	0.357	0.002	0.166	0.166	0.022	0.106	0.109
Flat-top taper	-0.201	0.454	0.496	-0.087	0.219	0.236	0.004	0.086	0.086
Local $(\widehat{\delta}_*)$	0.004	0.313	0.314	-0.006	0.146	0.146	-0.016	0.066	0.068

Table B.65: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.069	2.269	2.508	-0.575	1.288	1.410	-0.304	0.710	0.772
Flat-top taper	-0.833	2.734	2.858	-0.463	1.437	1.509	-0.209	0.745	0.774
Local $(\widehat{\delta}_*)$	-1.227	1.986	2.334	-0.762	1.238	1.453	-0.366	0.679	0.771

Table B.66: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.092	0.343	0.355	0.106	0.190	0.218	0.057	0.124	0.136
Flat-top taper	0.085	0.360	0.370	0.098	0.207	0.229	0.033	0.155	0.158
Local $(\widehat{\delta}_*)$	-0.038	0.357	0.359	-0.040	0.179	0.183	-0.032	0.085	0.091

Table B.67: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.394	0.450	0.599	-0.377	0.266	0.461	-0.291	0.211	0.359
Flat-top taper	-0.386	0.492	0.625	-0.374	0.274	0.464	-0.300	0.203	0.362
Local $(\hat{\delta}_*)$	-0.257	0.515	0.576	-0.263	0.256	0.367	-0.248	0.151	0.290

Table B.68: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.328	0.467	0.571	-0.132	0.358	0.382	-0.027	0.183	0.185
Flat-top taper	-0.325	0.502	0.598	-0.059	0.426	0.430	0.043	0.228	0.233
Local $(\widehat{\delta}_*)$	0.058	0.589	0.592	0.062	0.327	0.332	-0.001	0.176	0.176

Table B.69: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.822	0.433	0.929	0.520	0.381	0.645	0.156	0.105	0.188
Flat-top taper	0.809	0.458	0.929	0.577	0.350	0.675	0.314	0.174	0.359
Local $(\widehat{\delta}_*)$	0.551	0.357	0.657	0.441	0.268	0.516	0.227	0.174	0.286

Table B.70: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200	0	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.214	0.457	0.505	0.019	0.028	0.034	0.006	0.013	0.014
Flat-top taper	0.136	0.539	0.556	0.005	0.157	0.157	0.001	0.080	0.080
Local $(\widehat{\delta}_*)$	0.141	0.317	0.347	0.008	0.048	0.048	0.002	0.017	0.017

Table B.71: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.435	1.455	1.518	-0.215	0.762	0.792	-0.141	0.402	0.425
Flat-top taper	-0.115	1.680	1.684	0.012	0.777	0.777	0.000	0.360	0.360
Local $(\widehat{\delta}_*)$	-0.344	1.325	1.369	-0.186	0.678	0.703	-0.106	0.347	0.363

Table B.72: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.371	0.488	0.613	0.025	0.133	0.135	0.014	0.060	0.062
Flat-top taper	0.317	0.538	0.624	0.000	0.149	0.149	0.000	0.067	0.067
Local $(\widehat{\delta}_*)$	0.193	0.334	0.385	0.023	0.134	0.136	0.007	0.061	0.062

Table B.73: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.424	0.824	0.927	-0.130	0.448	0.467	-0.081	0.233	0.247
Flat-top taper	-0.334	0.950	1.007	0.000	0.458	0.458	0.001	0.212	0.212
Local $(\widehat{\delta}_*)$	-0.185	0.737	0.760	-0.113	0.401	0.417	-0.063	0.205	0.215

Table B.74: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.028	0.333	0.334	-0.009	0.166	0.166	-0.001	0.081	0.081
Flat-top taper	-0.029	0.338	0.340	-0.009	0.168	0.169	-0.001	0.081	0.081
Local $(\widehat{\delta}_*)$	-0.004	0.404	0.405	-0.003	0.199	0.199	0.000	0.098	0.098

Table B.75: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.020	0.332	0.332	-0.007	0.166	0.167	-0.001	0.081	0.081
Flat-top taper	-0.020	0.343	0.344	-0.007	0.169	0.169	-0.001	0.081	0.081
Local $(\widehat{\delta}_*)$	-0.004	0.400	0.400	-0.002	0.199	0.199	0.001	0.098	0.098

Table B.76: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.564	0.753	0.940	-0.158	0.454	0.481	-0.079	0.241	0.254
Flat-top taper	-0.520	0.826	0.976	-0.046	0.447	0.449	-0.010	0.206	0.206
Local $(\widehat{\delta}_*)$	-0.232	0.698	0.735	-0.125	0.392	0.411	-0.066	0.201	0.211

Table B.77: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.455	0.459	0.646	0.059	0.138	0.150	0.026	0.058	0.064
Flat-top taper	0.399	0.516	0.652	0.021	0.157	0.158	0.004	0.067	0.067
Local $(\widehat{\delta}_*)$	0.169	0.294	0.340	0.027	0.135	0.138	0.009	0.061	0.062

Table B.78: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.689	1.316	1.486	-0.279	0.771	0.820	-0.142	0.429	0.452
Flat-top taper	-0.456	1.452	1.522	-0.082	0.743	0.748	-0.020	0.369	0.369
Local $(\widehat{\delta}_*)$	-0.451	1.159	1.244	-0.221	0.659	0.695	-0.113	0.357	0.375

Table B.79: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.286	0.504	0.580	0.030	0.031	0.043	0.010	0.013	0.017
Flat-top taper	0.225	0.571	0.614	0.021	0.155	0.157	0.006	0.080	0.080
Local $(\widehat{\delta}_*)$	0.148	0.293	0.328	0.008	0.044	0.045	0.002	0.017	0.017

Table B.80: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200	0	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.819	0.467	0.943	0.480	0.397	0.623	0.128	0.091	0.157
Flat-top taper	0.810	0.485	0.944	0.564	0.351	0.664	0.318	0.174	0.363
Local $(\widehat{\delta}_*)$	0.623	0.398	0.740	0.453	0.275	0.530	0.237	0.174	0.294

Table B.81: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.238	0.530	0.581	-0.105	0.360	0.375	-0.020	0.178	0.179
Flat-top taper	-0.220	0.602	0.641	-0.023	0.438	0.439	0.056	0.229	0.236
Local $(\hat{\delta}_*)$	0.078	0.613	0.618	0.062	0.334	0.340	-0.001	0.177	0.177

Table B.82: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.432	0.372	0.570	-0.392	0.244	0.462	-0.292	0.215	0.363
Flat-top taper	-0.431	0.382	0.576	-0.393	0.242	0.461	-0.314	0.198	0.371
Local $(\widehat{\delta}_*)$	-0.291	0.461	0.545	-0.276	0.245	0.369	-0.254	0.149	0.295

Table B.83: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.108	0.340	0.357	0.115	0.181	0.215	0.071	0.120	0.140
Flat-top taper	0.105	0.355	0.370	0.108	0.197	0.225	0.045	0.151	0.158
Local $(\hat{\delta}_*)$	-0.029	0.364	0.365	-0.036	0.175	0.179	-0.029	0.086	0.091

Table B.84: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.558	1.577	2.217	-0.709	1.169	1.367	-0.319	0.699	0.768
Flat-top taper	-1.518	1.676	2.261	-0.708	1.249	1.436	-0.288	0.702	0.759
Local $(\widehat{\delta}_*)$	-1.618	1.352	2.108	-0.904	1.110	1.431	-0.409	0.651	0.768

Table B.85: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.137	0.377	0.401	0.036	0.175	0.178	0.040	0.120	0.126
Flat-top taper	-0.098	0.491	0.500	-0.081	0.222	0.237	0.012	0.085	0.086
Local $(\widehat{\delta}_*)$	0.003	0.297	0.297	-0.005	0.145	0.145	-0.014	0.066	0.067

Table B.86: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.
		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.837	3.275	4.333	-1.233	2.569	2.850	-0.558	1.490	1.591
Flat-top taper	-2.651	3.627	4.492	-0.985	2.778	2.948	-0.362	1.520	1.562
Local $(\widehat{\delta}_*)$	-3.114	3.044	4.354	-1.435	2.388	2.786	-0.651	1.392	1.537

Table B.87: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.067	0.193	0.204	0.063	0.176	0.187	0.021	0.075	0.078	
Flat-top taper	-0.348	0.460	0.577	0.018	0.210	0.211	-0.007	0.072	0.072	
Local $(\widehat{\delta}_*)$	0.024	0.152	0.154	0.001	0.067	0.067	-0.005	0.038	0.039	

Table B.88: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-4.549	5.717	7.306	-1.945	4.350	4.765	-0.933	2.501	2.669
Flat-top taper	-4.182	6.397	7.642	-1.464	4.759	4.979	-0.563	2.563	2.624
Local $(\widehat{\delta}_*)$	-4.931	5.354	7.278	-2.230	4.079	4.649	-1.064	2.342	2.573

Table B.89: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.104	0.189	0.216	0.070	0.209	0.220	0.014	0.055	0.057
Flat-top taper	-0.504	0.727	0.885	0.064	0.268	0.275	-0.014	0.099	0.100
Local $(\widehat{\delta}_*)$	0.036	0.124	0.129	0.005	0.046	0.046	-0.008	0.037	0.038

Table B.90: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.946	0.590	3.005	-2.505	1.166	2.763	-1.476	1.229	1.921
Flat-top taper	-2.942	0.621	3.007	-2.532	1.160	2.785	-1.662	1.193	2.046
Local $(\widehat{\delta}_*)$	-2.833	0.594	2.895	-2.499	0.965	2.679	-1.748	1.075	2.052

Table B.91: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.063	0.338	0.344	0.074	0.213	0.226	0.006	0.155	0.155
Flat-top taper	0.060	0.359	0.364	0.066	0.245	0.254	-0.003	0.186	0.186
Local $(\hat{\delta}_*)$	-0.091	0.359	0.371	-0.089	0.197	0.216	-0.026	0.131	0.134

Table B.92: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-27.216	9.305	28.763	-13.928	14.708	20.256	-5.956	12.507	13.853
Flat-top taper	-26.151	11.223	28.457	-10.953	17.716	20.829	-3.164	14.132	14.481
Local $(\widehat{\delta}_*)$	-27.472	9.624	29.109	-14.197	14.990	20.645	-6.194	12.287	13.760

Table B.93: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.037	0.359	0.361	-0.005	0.248	0.248	-0.004	0.169	0.169
Flat-top taper	-0.028	0.454	0.455	0.004	0.294	0.294	0.001	0.196	0.196
Local $(\hat{\delta}_*)$	-0.037	0.325	0.327	-0.027	0.194	0.195	-0.027	0.119	0.123

Table B.94: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-75.296	24.887	79.302	-39.358	40.196	56.256	-16.877	36.046	39.801
Flat-top taper	-71.310	30.329	77.491	-29.897	49.234	57.601	-8.251	41.397	42.211
Local $(\widehat{\delta}_*)$	-75.456	25.771	79.735	-39.140	41.225	56.846	-16.744	35.776	39.500

Table B.95: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.077	0.288	0.298	0.015	0.156	0.156	0.002	0.089	0.089
Flat-top taper	0.026	0.358	0.359	0.026	0.177	0.179	0.007	0.106	0.106
Local $(\widehat{\delta}_*)$	0.041	0.241	0.244	-0.003	0.113	0.113	-0.014	0.069	0.070

Table B.96: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-147.190	48.675	155.029	-75.064	81.054	110.474	-31.876	70.403	77.283
Flat-top taper	-138.848	59.480	151.052	-55.692	99.482	114.010	-14.223	80.774	82.016
Local $(\widehat{\delta}_*)$	-146.986	51.144	155.630	-74.276	83.898	112.052	-31.293	68.517	75.325

Table B.97: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.138	0.340	0.367	0.028	0.092	0.096	0.006	0.040	0.041	
Flat-top taper	0.095	0.456	0.465	0.054	0.144	0.154	0.017	0.060	0.063	
Local $(\widehat{\delta}_*)$	0.085	0.226	0.241	0.011	0.077	0.077	-0.002	0.035	0.035	

Table B.98: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200			n = 800	
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-243.945	79.588	256.600	-125.016	133.438	182.851	-53.910	118.121	129.842
Flat-top taper	-230.194	97.085	249.830	-92.829	163.639	188.135	-25.325	134.785	137.144
Local $(\widehat{\delta}_*)$	-243.457	83.363	257.333	-123.716	137.017	184.606	-53.143	116.539	128.084

Table B.99: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50				n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.228	0.774	0.807	0.047	0.125	0.133	0.011	0.016	0.019	
Flat-top taper	0.162	0.710	0.729	0.092	0.205	0.224	0.027	0.075	0.080	
Local $(\widehat{\delta}_*)$	0.141	0.311	0.342	0.019	0.100	0.102	-0.002	0.035	0.035	

Table B.100: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

Figure B.51: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$.

Figure B.52: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$.

Figure B.53: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$.

Figure B.54: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$.

Figure B.55: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$.

Figure B.56: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$.

Figure B.57: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$.

Figure B.58: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$.

Figure B.59: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$.

Figure B.60: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$.

Figure B.61: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$.

Figure B.62: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$.

Figure B.63: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$.

Figure B.64: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$.

Figure B.65: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$.

Figure B.66: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$.

Figure B.67: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$.

Figure B.68: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$.

Figure B.69: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$.

Figure B.70: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$.

Figure B.71: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$.

Figure B.72: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$.

Figure B.73: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$.

Figure B.74: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$.

Figure B.75: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$.

Figure B.76: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$.

Figure B.77: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$.

Figure B.78: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$.

Figure B.79: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$.

Figure B.80: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$.

Figure B.81: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$.

Figure B.82: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$.

Figure B.83: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$.

Figure B.84: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$.

Figure B.85: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$.

Figure B.86: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$.

Figure B.87: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$.

Figure B.88: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$.

Figure B.89: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$.

Figure B.90: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$.

Figure B.91: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$.

Figure B.92: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$.

Figure B.93: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$.

Figure B.94: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$.

Figure B.95: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$.

Figure B.96: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$.

Figure B.97: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$.

Figure B.98: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$.

Figure B.99: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$.

Figure B.100: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Laplace ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$.

B.3 Student *t* Process

Results are based on simulations of 25 Student t ARMA processes described in the main paper. For the tables, the Local quadratic estimator $\tilde{f}(\theta)$ is computed via OLS using the data-based optimal bandwidth $\hat{\delta}_*$, which is determined by using the Flat-top tapered spectral estimator. For the figures, a range of fixed δ values are used, letting this quantity range from .005 to .250 in 50 increments.

	n = 50				n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.174	0.301	0.348	0.037	0.079	0.087	0.009	0.018	0.020	
Flat-top taper	0.105	0.627	0.636	0.061	0.189	0.199	0.019	0.071	0.074	
Local $(\widehat{\delta}_*)$	0.097	0.337	0.351	0.013	0.098	0.099	-0.003	0.038	0.038	

Table B.101: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-127.222	235.863	267.986	-48.631	231.256	236.314	-23.986	151.442	153.330
Flat-top taper	-61.243	341.476	346.925	17.616	319.262	319.747	18.929	185.916	186.877
Local $(\widehat{\delta}_*)$	-159.751	197.460	253.990	-77.505	192.895	207.883	-32.732	137.942	141.772

Table B.102: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50				n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.064	0.231	0.240	-0.005	0.073	0.073	-0.005	0.042	0.043	
Flat-top taper	0.013	0.391	0.391	0.014	0.134	0.135	0.004	0.059	0.060	
Local $(\widehat{\delta}_*)$	0.048	0.238	0.243	-0.002	0.079	0.079	-0.008	0.037	0.038	

Table B.103: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50				n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-76.380	141.162	160.501	-28.864	139.683	142.634	-15.990	92.222	93.598	
Flat-top taper	-36.176	204.107	207.288	11.208	192.413	192.740	9.318	112.840	113.224	
Local $(\widehat{\delta}_*)$	-96.797	116.797	151.695	-46.793	115.743	124.844	-21.164	83.000	85.656	

Table B.104: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50				n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-0.052	0.215	0.221	-0.053	0.150	0.159	-0.021	0.098	0.100	
Flat-top taper	-0.089	0.302	0.315	-0.046	0.168	0.175	-0.017	0.107	0.108	
Local $(\widehat{\delta}_*)$	-0.009	0.221	0.221	-0.037	0.113	0.119	-0.028	0.072	0.077	

Table B.105: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50				n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-38.710	73.006	82.634	-14.388	72.313	73.730	-8.698	45.561	46.384	
Flat-top taper	-18.512	105.028	106.647	5.777	99.429	99.596	3.887	55.407	55.543	
Local $(\widehat{\delta}_*)$	-48.747	60.800	77.929	-23.295	60.647	64.967	-11.314	41.073	42.603	

Table B.106: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50				n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-0.159	0.332	0.368	-0.111	0.256	0.279	-0.045	0.178	0.184	
Flat-top taper	-0.211	0.393	0.446	-0.107	0.282	0.302	-0.039	0.192	0.196	
Local $(\widehat{\delta}_*)$	-0.083	0.308	0.319	-0.071	0.186	0.199	-0.046	0.122	0.130	

Table B.107: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50		n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-14.972	25.043	29.177	-6.124	25.288	26.019	-3.427	15.978	16.341
Flat-top taper	-8.681	35.496	36.542	0.228	34.652	34.653	0.594	19.214	19.223
Local $(\widehat{\delta}_*)$	-18.208	20.974	27.774	-9.258	21.284	23.211	-4.562	14.519	15.219

Table B.108: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.
		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.049	0.389	0.392	0.037	0.247	0.250	-0.012	0.170	0.170
Flat-top taper	0.039	0.418	0.420	0.025	0.273	0.274	-0.020	0.191	0.192
Local $(\widehat{\delta}_*)$	-0.143	0.377	0.403	-0.103	0.202	0.227	-0.030	0.134	0.137

Table B.109: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.556	1.703	3.071	-2.264	1.591	2.767	-1.413	1.273	1.902
Flat-top taper	-2.468	2.159	3.279	-2.234	1.769	2.850	-1.503	1.303	1.989
Local $(\widehat{\delta}_*)$	-2.399	1.588	2.877	-2.261	1.412	2.665	-1.626	1.145	1.989

Table B.110: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.086	0.176	0.196	0.052	0.163	0.171	0.009	0.029	0.031	
Flat-top taper	-0.463	0.793	0.919	0.061	0.252	0.260	-0.018	0.096	0.098	
Local $(\widehat{\delta}_*)$	0.032	0.141	0.145	0.004	0.051	0.051	-0.010	0.041	0.042	

Table B.111: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.621	8.173	8.583	-1.411	4.661	4.870	-0.845	2.521	2.659
Flat-top taper	-1.420	10.214	10.312	-0.601	5.326	5.359	-0.320	2.674	2.693
Local $(\widehat{\delta}_*)$	-3.481	7.286	8.075	-1.812	4.307	4.672	-0.959	2.405	2.590

Table B.112: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.022	0.159	0.160	0.034	0.141	0.145	0.012	0.057	0.059	
Flat-top taper	-0.346	0.481	0.593	0.017	0.195	0.196	-0.010	0.071	0.072	
Local $(\hat{\delta}_*)$	0.019	0.155	0.156	0.000	0.070	0.070	-0.006	0.040	0.040	

Table B.113: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.745	4.569	4.891	-0.862	2.794	2.923	-0.530	1.520	1.610
Flat-top taper	-1.094	5.690	5.794	-0.408	3.185	3.211	-0.231	1.609	1.625
Local $(\widehat{\delta}_*)$	-2.250	4.064	4.645	-1.127	2.590	2.824	-0.601	1.450	1.570

Table B.114: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.003	0.350	0.350	0.001	0.170	0.170	0.022	0.102	0.104
Flat-top taper	-0.203	0.449	0.493	-0.084	0.217	0.233	0.006	0.086	0.086
Local $(\widehat{\delta}_*)$	0.003	0.308	0.308	-0.008	0.142	0.142	-0.015	0.066	0.068

Table B.115: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.115	2.047	2.331	-0.560	1.354	1.465	-0.296	0.711	0.770
Flat-top taper	-0.888	2.433	2.590	-0.444	1.509	1.573	-0.206	0.740	0.768
Local $(\widehat{\delta}_*)$	-1.269	1.801	2.203	-0.745	1.285	1.485	-0.364	0.674	0.765

Table B.116: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.091	0.339	0.351	0.108	0.188	0.217	0.060	0.125	0.139
Flat-top taper	0.085	0.354	0.364	0.099	0.204	0.227	0.036	0.156	0.160
Local $(\widehat{\delta}_*)$	-0.038	0.355	0.358	-0.040	0.175	0.180	-0.029	0.087	0.092

Table B.117: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.398	0.434	0.589	-0.379	0.264	0.462	-0.293	0.209	0.360
Flat-top taper	-0.390	0.475	0.614	-0.376	0.276	0.467	-0.301	0.202	0.362
Local $(\widehat{\delta}_*)$	-0.260	0.498	0.561	-0.263	0.259	0.370	-0.249	0.151	0.291

Table B.118: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.321	0.469	0.568	-0.135	0.351	0.376	-0.027	0.186	0.188
Flat-top taper	-0.316	0.509	0.599	-0.062	0.418	0.422	0.043	0.231	0.235
Local $(\widehat{\delta}_*)$	0.065	0.588	0.592	0.059	0.326	0.331	-0.002	0.178	0.178

Table B.119: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.822	0.425	0.926	0.520	0.384	0.646	0.154	0.104	0.186
Flat-top taper	0.809	0.450	0.926	0.577	0.352	0.676	0.312	0.174	0.358
Local $(\widehat{\delta}_*)$	0.551	0.343	0.649	0.440	0.270	0.517	0.226	0.174	0.285

Table B.120: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.224	0.468	0.519	0.020	0.031	0.037	0.006	0.013	0.014
Flat-top taper	0.144	0.550	0.568	0.006	0.157	0.158	0.003	0.082	0.082
Local $(\widehat{\delta}_*)$	0.147	0.325	0.357	0.009	0.047	0.048	0.002	0.017	0.017

Table B.121: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.428	1.449	1.511	-0.238	0.741	0.778	-0.145	0.391	0.417
Flat-top taper	-0.115	1.673	1.677	-0.012	0.749	0.749	-0.005	0.351	0.351
Local $(\widehat{\delta}_*)$	-0.341	1.301	1.345	-0.209	0.673	0.705	-0.112	0.339	0.357

Table B.122: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.361	0.494	0.612	0.025	0.133	0.135	0.014	0.060	0.062	
Flat-top taper	0.305	0.544	0.624	0.002	0.150	0.150	0.000	0.067	0.067	
Local $(\widehat{\delta}_*)$	0.190	0.339	0.388	0.024	0.136	0.138	0.008	0.062	0.062	

Table B.123: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.398	0.882	0.968	-0.134	0.434	0.454	-0.082	0.235	0.249
Flat-top taper	-0.303	1.019	1.063	-0.005	0.440	0.440	0.001	0.212	0.212
Local $(\widehat{\delta}_*)$	-0.171	0.788	0.806	-0.118	0.387	0.404	-0.065	0.207	0.217

Table B.124: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.027	0.329	0.330	-0.008	0.170	0.170	-0.001	0.102	0.102
Flat-top taper	-0.028	0.335	0.337	-0.008	0.172	0.172	-0.001	0.103	0.103
Local $(\widehat{\delta}_*)$	-0.002	0.403	0.403	-0.003	0.202	0.202	0.001	0.117	0.117

Table B.125: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.017	0.334	0.335	-0.006	0.172	0.172	-0.001	0.102	0.102
Flat-top taper	-0.016	0.349	0.349	-0.006	0.176	0.176	-0.001	0.102	0.102
Local $(\widehat{\delta}_*)$	-0.002	0.405	0.405	-0.002	0.204	0.204	0.000	0.116	0.116

Table B.126: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-0.561	0.762	0.946	-0.158	0.443	0.470	-0.081	0.247	0.260	
Flat-top taper	-0.519	0.835	0.984	-0.047	0.434	0.437	-0.010	0.214	0.214	
Local $(\widehat{\delta}_*)$	-0.233	0.706	0.744	-0.126	0.383	0.403	-0.067	0.207	0.218	

Table B.127: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.453	0.460	0.646	0.057	0.139	0.150	0.025	0.059	0.064
Flat-top taper	0.395	0.519	0.653	0.019	0.156	0.157	0.004	0.067	0.067
Local $(\widehat{\delta}_*)$	0.173	0.294	0.341	0.026	0.136	0.138	0.008	0.061	0.061

Table B.128: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.691	1.317	1.487	-0.290	0.768	0.821	-0.134	0.418	0.439
Flat-top taper	-0.464	1.460	1.532	-0.088	0.750	0.755	-0.015	0.362	0.363
Local $(\widehat{\delta}_*)$	-0.458	1.164	1.251	-0.228	0.659	0.697	-0.110	0.348	0.365

Table B.129: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.280	0.483	0.558	0.031	0.034	0.046	0.010	0.013	0.016
Flat-top taper	0.214	0.555	0.595	0.024	0.155	0.157	0.006	0.080	0.080
Local $(\widehat{\delta}_*)$	0.143	0.280	0.314	0.009	0.045	0.046	0.002	0.017	0.017

Table B.130: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200	0	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.813	0.465	0.937	0.490	0.400	0.632	0.127	0.091	0.156
Flat-top taper	0.804	0.482	0.937	0.574	0.352	0.673	0.317	0.174	0.361
Local $(\widehat{\delta}_*)$	0.614	0.399	0.732	0.459	0.275	0.535	0.234	0.174	0.292

Table B.131: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.246	0.521	0.576	-0.107	0.349	0.365	-0.019	0.176	0.177
Flat-top taper	-0.226	0.592	0.634	-0.028	0.426	0.427	0.056	0.229	0.236
Local $(\widehat{\delta}_*)$	0.072	0.603	0.607	0.062	0.322	0.328	0.001	0.176	0.176

Table B.132: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.437	0.375	0.576	-0.389	0.252	0.463	-0.293	0.216	0.364
Flat-top taper	-0.435	0.389	0.584	-0.391	0.247	0.462	-0.314	0.199	0.372
Local $(\widehat{\delta}_*)$	-0.295	0.459	0.546	-0.272	0.250	0.369	-0.255	0.150	0.296

Table B.133: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.100	0.320	0.335	0.113	0.184	0.216	0.070	0.120	0.139
Flat-top taper	0.097	0.335	0.348	0.106	0.201	0.227	0.044	0.151	0.157
Local $(\widehat{\delta}_*)$	-0.037	0.348	0.350	-0.040	0.176	0.181	-0.030	0.086	0.091

Table B.134: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.556	1.656	2.272	-0.703	1.191	1.383	-0.308	0.717	0.781
Flat-top taper	-1.513	1.754	2.316	-0.702	1.269	1.450	-0.273	0.719	0.770
Local $(\widehat{\delta}_*)$	-1.611	1.407	2.139	-0.902	1.122	1.440	-0.395	0.669	0.777

Table B.135: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.137	0.385	0.409	0.035	0.170	0.173	0.036	0.116	0.122
Flat-top taper	-0.094	0.491	0.500	-0.081	0.223	0.238	0.010	0.086	0.087
Local $(\widehat{\delta}_*)$	0.003	0.304	0.304	-0.003	0.147	0.147	-0.015	0.067	0.068

Table B.136: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.747	3.426	4.391	-1.200	2.547	2.815	-0.548	1.491	1.589
Flat-top taper	-2.557	3.806	4.585	-0.965	2.738	2.903	-0.349	1.517	1.557
Local $(\widehat{\delta}_*)$	-3.026	3.175	4.386	-1.410	2.357	2.746	-0.644	1.391	1.533

Table B.137: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.065	0.184	0.195	0.061	0.167	0.178	0.022	0.082	0.085
Flat-top taper	-0.353	0.466	0.585	0.018	0.210	0.211	-0.004	0.073	0.074
Local $(\widehat{\delta}_*)$	0.021	0.148	0.149	0.001	0.068	0.068	-0.005	0.039	0.039

Table B.138: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-4.535	5.838	7.392	-1.974	4.215	4.654	-0.891	2.572	2.722
Flat-top taper	-4.152	6.550	7.755	-1.503	4.559	4.801	-0.526	2.634	2.686
Local $(\widehat{\delta}_*)$	-4.913	5.474	7.355	-2.261	3.914	4.520	-1.034	2.393	2.607

Table B.139: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.106	0.218	0.242	0.072	0.213	0.225	0.013	0.049	0.051
Flat-top taper	-0.505	0.738	0.895	0.056	0.280	0.286	-0.015	0.097	0.098
Local $(\widehat{\delta}_*)$	0.031	0.118	0.122	0.006	0.046	0.046	-0.008	0.036	0.037

Table B.140: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.923	0.654	2.995	-2.485	1.186	2.753	-1.490	1.205	1.916
Flat-top taper	-2.917	0.693	2.998	-2.511	1.188	2.777	-1.675	1.168	2.042
Local $(\widehat{\delta}_*)$	-2.810	0.664	2.887	-2.482	0.991	2.672	-1.759	1.051	2.049

Table B.141: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.077	0.369	0.377	0.078	0.219	0.232	0.007	0.155	0.156
Flat-top taper	0.075	0.390	0.397	0.070	0.251	0.261	-0.001	0.185	0.185
Local $(\widehat{\delta}_*)$	-0.075	0.378	0.386	-0.084	0.199	0.216	-0.025	0.131	0.133

Table B.142: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-27.321	9.037	28.777	-14.055	14.755	20.378	-5.847	12.712	13.992
Flat-top taper	-26.268	10.896	28.439	-11.086	17.837	21.002	-3.062	14.266	14.591
Local $(\widehat{\delta}_*)$	-27.569	9.290	29.092	-14.290	15.178	20.847	-6.119	12.314	13.750

Table B.143: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.044	0.367	0.369	-0.002	0.250	0.250	-0.004	0.168	0.168
Flat-top taper	-0.026	0.459	0.460	0.010	0.298	0.299	0.002	0.193	0.193
Local $(\widehat{\delta}_*)$	-0.030	0.334	0.336	-0.024	0.193	0.195	-0.026	0.118	0.121

Table B.144: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-75.067	24.443	78.946	-38.634	40.707	56.122	-16.557	35.748	39.396
Flat-top taper	-71.030	29.802	77.029	-29.028	50.146	57.942	-7.875	40.997	41.746
Local $(\widehat{\delta}_*)$	-75.076	25.805	79.387	-38.351	42.020	56.890	-16.432	35.102	38.757

Table B.145: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.072	0.281	0.290	0.015	0.170	0.171	0.005	0.104	0.104
Flat-top taper	0.025	0.358	0.359	0.026	0.178	0.180	0.009	0.108	0.108
Local $(\widehat{\delta}_*)$	0.036	0.227	0.230	-0.004	0.114	0.114	-0.013	0.069	0.071

Table B.146: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-146.025	50.348	154.461	-75.320	80.389	110.161	-32.102	70.910	77.838
Flat-top taper	-137.449	61.584	150.615	-55.701	99.112	113.692	-14.892	80.966	82.324
Local $(\widehat{\delta}_*)$	-145.847	52.537	155.021	-74.410	82.524	111.117	-31.829	69.202	76.171

Table B.147: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.137	0.322	0.350	0.027	0.074	0.078	0.007	0.040	0.040
Flat-top taper	0.095	0.456	0.466	0.056	0.143	0.153	0.017	0.061	0.063
Local $(\widehat{\delta}_*)$	0.089	0.235	0.251	0.012	0.075	0.076	-0.002	0.035	0.035

Table B.148: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200			n = 800	
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-242.606	81.102	255.803	-124.884	132.160	181.830	-53.662	117.879	129.519
Flat-top taper	-228.576	99.010	249.098	-92.192	163.843	188.000	-24.999	134.933	137.229
Local $(\widehat{\delta}_*)$	-242.064	84.913	256.525	-123.055	137.354	184.414	-52.873	116.247	127.707

Table B.149: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.214	0.400	0.453	0.044	0.060	0.074	0.011	0.016	0.020
Flat-top taper	0.172	0.699	0.720	0.092	0.206	0.225	0.027	0.075	0.080
Local $(\widehat{\delta}_*)$	0.137	0.299	0.329	0.018	0.094	0.096	-0.002	0.035	0.035

Table B.150: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Student *t* ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

Figure B.101: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$.

Figure B.102: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.8$.

Figure B.103: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$.

Figure B.104: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = -.4$.

Figure B.105: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$.

Figure B.106: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = 0$.

Figure B.107: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$.

Figure B.108: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .4$.

Figure B.109: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$.

Figure B.110: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.9$ and $\vartheta = .8$.

Figure B.111: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$.

Figure B.112: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.8$.

Figure B.113: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$.

Figure B.114: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = -.4$.

Figure B.115: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$.

Figure B.116: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = 0$.

Figure B.117: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$.

Figure B.118: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .4$.

Figure B.119: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$.

Figure B.120: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = -.5$ and $\vartheta = .8$.

Figure B.121: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$.

Figure B.122: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.8$.

Figure B.123: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$.

Figure B.124: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = -.4$.

Figure B.125: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$.

Figure B.126: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = 0$.

Figure B.127: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$.

Figure B.128: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = .4$.

Figure B.129: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$.

Figure B.130: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = 0$ and $\vartheta = .8$.

Figure B.131: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$.

Figure B.132: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.8$.

Figure B.133: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$.

Figure B.134: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = -.4$.

Figure B.135: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$.

Figure B.136: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = 0$.

Figure B.137: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$.

Figure B.138: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = .4$.

Figure B.139: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$.

Figure B.140: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .5$ and $\vartheta = .8$.

Figure B.141: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$.

Figure B.142: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.8$.

Figure B.143: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$.

Figure B.144: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = -.4$.

Figure B.145: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$.

Figure B.146: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = 0$.

Figure B.147: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$.

Figure B.148: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = .4$.

Figure B.149: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$.

Figure B.150: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Student t ARMA(1,1) process with $\phi = .9$ and $\vartheta = .8$.

B.4 Polynomial Gaussian Process

Results are based on simulations of 25 Polynomial Gaussian processes described in the main paper (also see Appendix A). For the tables, the Local quadratic estimator $\tilde{f}(\theta)$ is computed via OLS using the data-based optimal bandwidth $\hat{\delta}_*$, which is determined by using the Flat-top tapered spectral estimator. For the figures, a range of fixed δ values are used, letting this quantity range from .005 to .250 in 50 increments.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.173	0.729	0.750	-0.155	0.469	0.494	-0.060	0.326	0.331
Flat-top taper	-0.288	0.944	0.987	-0.137	0.525	0.543	-0.048	0.335	0.339
Local $(\widehat{\delta}_*)$	-0.033	0.763	0.763	-0.108	0.368	0.384	-0.081	0.232	0.246

Table B.151: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = -.9$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-113.524	230.771	257.182	-44.829	216.540	221.132	-24.420	143.799	145.857	
Flat-top taper	-52.346	329.871	333.998	14.605	296.447	296.807	13.582	175.792	176.316	
Local $(\widehat{\delta}_*)$	-143.816	193.341	240.964	-71.421	181.674	195.209	-33.085	130.645	134.769	

Table B.152: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = -.9$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-0.264	0.916	0.954	-0.187	0.588	0.617	-0.078	0.398	0.405	
Flat-top taper	-0.528	1.146	1.261	-0.187	0.636	0.663	-0.071	0.415	0.421	
Local $(\widehat{\delta}_*)$	-0.089	0.909	0.913	-0.139	0.465	0.485	-0.099	0.295	0.311	

Table B.153: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = -.5$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-46.382	71.235	85.005	-20.879	73.022	75.948	-10.824	44.755	46.045	
Flat-top taper	-29.593	100.244	104.521	-4.221	97.835	97.926	-0.069	52.712	52.712	
Local $(\widehat{\delta}_*)$	-55.131	59.498	81.114	-29.248	62.368	68.886	-14.430	41.261	43.711	

Table B.154: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = -.5$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.549	1.668	1.756	-0.438	1.126	1.208	-0.190	0.771	0.794
Flat-top taper	-0.760	1.832	1.984	-0.421	1.237	1.306	-0.170	0.819	0.837
Local $(\widehat{\delta}_*)$	-0.333	1.484	1.521	-0.271	0.860	0.902	-0.175	0.539	0.567

Table B.155: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-45.613	68.455	82.259	-17.875	70.480	72.711	-9.519	44.613	45.617	
Flat-top taper	-29.693	97.344	101.772	-0.811	95.189	95.192	1.356	53.592	53.609	
Local $(\widehat{\delta}_*)$	-53.541	57.781	78.773	-26.640	59.227	64.942	-12.913	40.906	42.896	

Table B.156: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-3.232	4.429	5.483	-1.763	3.954	4.329	-0.774	2.741	2.848
Flat-top taper	-2.969	5.229	6.013	-1.469	4.421	4.659	-0.612	2.956	3.018
Local $(\widehat{\delta}_*)$	-2.987	4.135	5.101	-2.013	3.481	4.021	-1.163	2.432	2.696

Table B.157: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = .5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50				n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-44.843	69.547	82.751	-18.954	67.611	70.217	-10.430	44.261	45.473	
Flat-top taper	-29.358	98.367	102.654	-3.197	91.062	91.118	-0.130	53.302	53.302	
Local $(\widehat{\delta}_*)$	-52.771	58.970	79.134	-27.510	57.509	63.750	-13.708	40.651	42.900	

Table B.158: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = .5$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-152.147	51.016	160.472	-78.909	89.849	119.580	-35.495	73.674	81.779
Flat-top taper	-145.228	61.517	157.719	-61.264	107.726	123.928	-19.344	82.721	84.952
Local $(\widehat{\delta}_*)$	-153.018	53.025	161.945	-79.479	91.397	121.121	-36.230	71.312	79.988

Table B.159: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = .9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-46.649	65.335	80.280	-22.773	60.149	64.316	-12.089	38.361	40.220	
Flat-top taper	-33.011	90.764	96.581	-9.428	77.075	77.650	-2.937	43.140	43.240	
Local $(\widehat{\delta}_*)$	-53.353	56.862	77.973	-30.148	52.839	60.835	-15.756	34.895	38.287	

Table B.160: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = .9$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.255	0.777	0.818	-0.191	0.526	0.560	-0.076	0.354	0.362
Flat-top taper	-0.403	0.972	1.052	-0.180	0.589	0.616	-0.066	0.382	0.388
Local $(\widehat{\delta}_*)$	-0.086	0.794	0.798	-0.136	0.419	0.441	-0.097	0.265	0.282

Table B.161: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = -.9$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-81.203	151.742	172.103	-34.038	144.312	148.272	-17.811	93.357	95.040	
Flat-top taper	-42.865	216.975	221.168	3.178	195.205	195.231	6.430	112.089	112.273	
Local $(\widehat{\delta}_*)$	-100.438	127.011	161.925	-51.156	122.901	133.122	-23.389	86.344	89.456	

Table B.162: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = -.9$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.018	1.180	1.180	0.000	0.559	0.559	0.066	0.345	0.352
Flat-top taper	-0.618	1.436	1.564	-0.259	0.692	0.738	0.019	0.288	0.289
Local $(\widehat{\delta}_*)$	0.011	1.085	1.085	-0.019	0.508	0.508	-0.042	0.234	0.238

Table B.163: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = -.5$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-3.580	6.593	7.502	-1.792	4.358	4.712	-0.933	2.372	2.549
Flat-top taper	-2.958	7.549	8.108	-1.470	4.814	5.034	-0.662	2.466	2.553
Local $(\widehat{\delta}_*)$	-4.002	6.021	7.230	-2.356	4.120	4.746	-1.132	2.266	2.533

Table B.164: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = -.5$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.584	1.701	1.799	0.280	0.973	1.012	0.014	0.430	0.430
Flat-top taper	0.527	1.789	1.865	0.094	1.106	1.110	-0.225	0.480	0.530
Local $(\widehat{\delta}_*)$	-0.135	1.470	1.476	-0.107	0.711	0.719	-0.020	0.389	0.390

Table B.165: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.228	2.336	3.228	-1.638	1.682	2.348	-0.804	0.978	1.266
Flat-top taper	-2.154	2.554	3.341	-1.622	1.733	2.374	-0.936	1.010	1.377
Local $(\widehat{\delta}_*)$	-1.560	2.471	2.922	-1.497	1.417	2.061	-1.075	0.954	1.437

Table B.166: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-3.826	3.425	5.135	-1.848	3.050	3.567	-0.754	1.599	1.768
Flat-top taper	-3.741	3.644	5.222	-1.749	3.096	3.556	-0.848	1.508	1.730
Local $(\widehat{\delta}_*)$	-3.585	3.446	4.973	-2.020	2.710	3.380	-1.070	1.466	1.815

Table B.167: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = .5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.032	2.020	2.268	-0.689	1.258	1.435	-0.459	0.717	0.852
Flat-top taper	-1.031	2.251	2.476	-0.566	1.396	1.506	-0.350	0.676	0.762
Local $(\widehat{\delta}_*)$	-1.751	1.826	2.530	-1.056	1.271	1.653	-0.592	0.656	0.884

Table B.168: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = .5$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-151.667	52.216	160.404	-78.181	84.291	114.966	-33.169	73.350	80.501
Flat-top taper	-144.966	62.778	157.975	-60.712	101.157	117.977	-16.925	82.870	84.580
Local $(\widehat{\delta}_*)$	-152.694	53.827	161.904	-78.640	86.501	116.904	-33.840	71.889	79.456

Table B.169: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = .9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.600	2.463	2.535	-0.228	2.061	2.073	-0.114	1.430	1.435
Flat-top taper	-0.249	3.096	3.105	0.010	2.451	2.452	-0.013	1.657	1.657
Local $(\widehat{\delta}_*)$	-0.963	2.276	2.471	-0.627	1.770	1.878	-0.450	1.259	1.337

Table B.170: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = .9$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.451	1.061	1.153	-0.325	0.801	0.864	-0.133	0.537	0.553
Flat-top taper	-0.599	1.247	1.383	-0.310	0.893	0.945	-0.116	0.580	0.591
Local $(\widehat{\delta}_*)$	-0.196	1.043	1.061	-0.230	0.611	0.653	-0.148	0.387	0.415

Table B.171: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = -.9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-81.739	149.700	170.562	-29.389	153.770	156.553	-17.983	96.169	97.836	
Flat-top taper	-44.158	213.935	218.445	9.471	210.585	210.798	6.281	119.930	120.094	
Local $(\widehat{\delta}_*)$	-100.571	125.123	160.531	-47.698	129.271	137.790	-23.894	87.182	90.397	

Table B.172: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = -.9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.299	1.519	1.548	-0.026	0.655	0.656	0.066	0.387	0.392
Flat-top taper	-0.033	1.721	1.721	-0.430	0.751	0.866	0.018	0.369	0.369
Local $(\widehat{\delta}_*)$	-0.099	1.222	1.226	-0.029	0.592	0.593	-0.024	0.300	0.301

Table B.173: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = -.5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-3.165	4.830	5.775	-1.708	3.046	3.492	-0.793	1.720	1.894
Flat-top taper	-2.846	5.434	6.135	-1.660	3.244	3.644	-0.720	1.778	1.919
Local $(\widehat{\delta}_*)$	-2.944	4.291	5.204	-2.201	2.844	3.597	-1.012	1.664	1.948

Table B.174: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = -.5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-0.023	1.549	1.549	0.003	0.787	0.787	-0.001	0.386	0.386	
Flat-top taper	-0.013	1.573	1.573	0.008	0.795	0.795	0.000	0.387	0.387	
Local $(\widehat{\delta}_*)$	0.029	1.717	1.717	0.015	0.845	0.845	0.003	0.418	0.418	

Table B.175: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-0.049	1.552	1.553	-0.020	0.781	0.781	-0.005	0.384	0.384
Flat-top taper	-0.048	1.596	1.597	-0.021	0.790	0.791	-0.006	0.386	0.386
Local $(\widehat{\delta}_*)$	0.012	1.700	1.700	-0.001	0.855	0.855	-0.001	0.420	0.420

Table B.176: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-3.967	4.067	5.681	-1.779	2.915	3.414	-0.777	1.715	1.882
Flat-top taper	-3.884	4.293	5.789	-1.941	3.017	3.587	-0.828	1.729	1.917
Local $(\widehat{\delta}_*)$	-3.412	3.696	5.030	-2.364	2.743	3.621	-1.061	1.639	1.952

Table B.177: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = .5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.737	1.604	1.765	0.058	0.636	0.639	0.110	0.398	0.413
Flat-top taper	0.437	1.850	1.900	-0.411	0.735	0.842	0.032	0.375	0.376
Local $(\widehat{\delta}_*)$	-0.157	1.090	1.101	-0.020	0.599	0.599	-0.022	0.302	0.302

Table B.178: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = .5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-152.308	51.667	160.833	-76.186	89.784	117.752	-33.220	73.593	80.744
Flat-top taper	-145.472	62.147	158.191	-57.755	109.425	123.731	-16.690	83.650	85.299
Local $(\widehat{\delta}_*)$	-153.369	53.126	162.310	-76.478	92.745	120.211	-33.663	72.351	79.798

Table B.179: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = .9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.126	1.202	1.209	0.011	0.821	0.821	0.000	0.538	0.538
Flat-top taper	-0.085	1.489	1.491	0.041	0.948	0.949	0.016	0.598	0.599
Local $(\widehat{\delta}_*)$	-0.017	1.093	1.093	-0.072	0.631	0.635	-0.080	0.385	0.393

Table B.180: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = .9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.789	2.342	2.947	-1.109	2.121	2.394	-0.473	1.520	1.592
Flat-top taper	-1.821	2.835	3.369	-0.998	2.387	2.587	-0.392	1.638	1.684
Local $(\widehat{\delta}_*)$	-1.580	2.046	2.585	-1.265	1.771	2.176	-0.713	1.278	1.463

Table B.181: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = -.9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-81.313	149.288	169.996	-32.208	147.333	150.813	-18.219	89.735	91.566	
Flat-top taper	-44.323	211.711	216.301	5.118	200.064	200.129	5.535	108.694	108.835	
Local $(\widehat{\delta}_*)$	-100.251	124.899	160.156	-50.138	123.889	133.650	-23.790	82.464	85.827	

Table B.182: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = -.9$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.169	1.915	2.243	-0.753	1.249	1.459	-0.435	0.737	0.856
Flat-top taper	-1.202	2.104	2.423	-0.683	1.345	1.509	-0.386	0.665	0.769
Local $(\widehat{\delta}_*)$	-1.911	1.744	2.588	-1.075	1.231	1.634	-0.602	0.653	0.888

Table B.183: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = -.5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-3.375	4.244	5.422	-1.727	3.059	3.512	-0.814	1.554	1.754
Flat-top taper	-3.183	4.776	5.739	-1.514	3.213	3.551	-0.801	1.501	1.701
Local $(\widehat{\delta}_*)$	-3.061	4.031	5.061	-1.915	2.750	3.351	-1.062	1.446	1.794

Table B.184: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = -.5$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-2.444	2.091	3.217	-1.726	1.736	2.448	-0.739	0.987	1.233
Flat-top taper	-2.412	2.181	3.251	-1.774	1.710	2.464	-0.982	1.001	1.402
Local $(\widehat{\delta}_*)$	-1.782	2.242	2.864	-1.530	1.431	2.095	-1.104	0.960	1.463

Table B.185: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.590	1.617	1.721	0.384	0.957	1.031	0.022	0.412	0.413
Flat-top taper	0.538	1.710	1.792	0.217	1.104	1.125	-0.234	0.462	0.518
Local $(\widehat{\delta}_*)$	-0.170	1.416	1.426	-0.131	0.706	0.718	-0.033	0.383	0.385

Table B.186: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-4.614	5.717	7.347	-2.013	4.097	4.565	-0.871	2.432	2.583
Flat-top taper	-4.450	6.059	7.518	-1.977	4.376	4.802	-0.753	2.468	2.580
Local $(\widehat{\delta}_*)$	-4.798	5.103	7.005	-2.614	3.944	4.732	-1.124	2.307	2.566

Table B.187: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = .5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.428	1.392	1.456	0.107	0.576	0.586	0.127	0.414	0.433	
Flat-top taper	-0.274	1.664	1.686	-0.254	0.723	0.767	0.042	0.295	0.298	
Local $(\widehat{\delta}_*)$	0.010	1.033	1.033	-0.002	0.513	0.513	-0.037	0.237	0.240	

Table B.188: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = .5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-153.046	53.434	162.106	-80.036	86.629	117.942	-34.662	73.304	81.086
Flat-top taper	-145.864	64.404	159.450	-62.173	104.438	121.543	-18.293	82.874	84.869
Local $(\widehat{\delta}_*)$	-154.136	55.109	163.692	-80.544	88.703	119.815	-35.440	71.653	79.939

Table B.189: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = .9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.190	1.060	1.077	0.030	0.537	0.538	0.010	0.354	0.354	
Flat-top taper	-0.085	1.228	1.231	0.048	0.632	0.633	0.019	0.382	0.382	
Local $(\widehat{\delta}_*)$	0.062	0.833	0.836	-0.031	0.433	0.434	-0.048	0.259	0.263	

Table B.190: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = .9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-77.499	23.095	80.867	-42.870	40.243	58.799	-18.598	36.026	40.543
Flat-top taper	-74.994	27.855	80.000	-36.234	47.197	59.502	-12.134	38.856	40.707
Local $(\widehat{\delta}_*)$	-78.615	23.248	81.980	-44.679	39.732	59.790	-20.288	33.587	39.239

Table B.191: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = -.9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-84.056	143.064	165.930	-35.508	143.534	147.861	-19.627	91.017	93.109	
Flat-top taper	-49.534	200.729	206.750	-0.505	193.488	193.489	3.687	109.796	109.858	
Local $(\widehat{\delta}_*)$	-101.627	120.677	157.769	-52.130	122.720	133.333	-25.371	82.360	86.179	

Table B.192: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = -.9$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-78.547	22.592	81.731	-39.723	41.715	57.602	-16.830	34.570	38.449	
Flat-top taper	-76.544	26.616	81.039	-32.665	50.128	59.832	-9.984	38.516	39.790	
Local $(\hat{\delta}_*)$	-79.811	22.856	83.019	-41.271	42.571	59.292	-18.259	33.357	38.028	

Table B.193: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = -.5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-1.879	4.663	5.027	-0.549	3.908	3.946	-0.255	2.591	2.604
Flat-top taper	-1.106	5.561	5.670	-0.038	4.606	4.606	-0.038	2.959	2.960
Local $(\widehat{\delta}_*)$	-2.297	4.474	5.029	-1.127	3.526	3.702	-0.783	2.350	2.477

Table B.194: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = -.5$. Sample size is n = 50,200,800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-78.398	24.597	82.166	-39.408	42.453	57.924	-16.483	35.368	39.020	
Flat-top taper	-76.004	29.257	81.440	-31.615	51.320	60.277	-9.066	39.849	40.867	
Local $(\widehat{\delta}_*)$	-79.125	25.032	82.990	-40.576	43.862	59.752	-17.580	34.492	38.714	

Table B.195: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.283	1.909	1.930	-0.042	1.103	1.104	-0.005	0.742	0.742
Flat-top taper	0.022	2.226	2.226	-0.010	1.281	1.281	0.020	0.843	0.843
Local $(\widehat{\delta}_*)$	-0.202	1.528	1.541	-0.115	0.903	0.910	-0.095	0.543	0.551

Table B.196: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = 0$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200		n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	-80.315	26.053	84.435	-41.413	42.586	59.402	-18.026	37.101	41.248	
Flat-top taper	-77.497	30.950	83.449	-33.548	50.956	61.008	-10.677	41.521	42.872	
Local $(\widehat{\delta}_*)$	-81.610	26.518	85.811	-42.853	43.394	60.987	-19.331	36.203	41.041	

Table B.197: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = .5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

		n = 50			n = 200)	n = 800			
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE	
Parzen taper	0.157	1.069	1.081	0.018	0.601	0.602	0.002	0.383	0.383	
Flat-top taper	-0.335	1.338	1.379	0.011	0.675	0.675	0.006	0.418	0.418	
Local $(\widehat{\delta}_*)$	0.019	0.960	0.960	-0.044	0.484	0.486	-0.060	0.292	0.298	

Table B.198: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = .5$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	-224.050	80.429	238.049	-115.115	130.474	173.997	-50.252	109.942	120.883
Flat-top taper	-211.743	97.572	233.143	-86.411	158.591	180.605	-24.354	124.951	127.302
Local $(\widehat{\delta}_*)$	-224.588	83.583	239.637	-114.394	134.623	176.662	-50.342	106.897	118.158

Table B.199: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = 0$, for a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = .9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

	n = 50			n = 200			n = 800		
Method	Bias	SD	RMSE	Bias	SD	RMSE	Bias	SD	RMSE
Parzen taper	0.220	0.995	1.019	0.062	0.623	0.626	0.011	0.316	0.316
Flat-top taper	0.084	1.148	1.151	0.091	0.584	0.591	0.023	0.335	0.336
Local $(\widehat{\delta}_*)$	0.112	0.786	0.794	-0.001	0.387	0.387	-0.041	0.226	0.229

Table B.200: Bias, Standard Deviation, and Root MSE for spectral density estimators at frequency $\theta = \pi$, for a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = .9$. Sample size is n = 50, 200, 800. Flat-top tapered estimation and Parzen-taper estimation are considered, with optimal bandwidth choices. Local quadratic spectral estimation is considered with estimated optimal window $\hat{\delta}_*$.

Figure B.151: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = -.9$.

Figure B.152: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = -.9$.

Figure B.153: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = -.5$.

Figure B.154: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = -.5$.

Figure B.155: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = 0$.

Figure B.156: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = 0$.

Figure B.157: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = .5$.

Figure B.158: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = .5$.

Figure B.159: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = .9$.

Figure B.160: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.9$ and $\phi_2 = .9$.

Figure B.161: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = -.9$.

Figure B.162: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = -.9$.

Figure B.163: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = -.5$.

Figure B.164: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = -.5$.

Figure B.165: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = 0$.

Figure B.166: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = 0$.

Figure B.167: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = .5$.

Figure B.168: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = .5$.

Figure B.169: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = .9$.

Figure B.170: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = -.5$ and $\phi_2 = .9$.

Figure B.171: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = -.9$.

Figure B.172: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = -.9$.

Figure B.173: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = -.5$.

Figure B.174: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = -.5$.

Figure B.175: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = 0$.

Figure B.176: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = 0$.

Figure B.177: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = .5$.

Figure B.178: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = .5$.

Figure B.179: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = .9$.

Figure B.180: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = 0$ and $\phi_2 = .9$.

Figure B.181: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = -.9$.

Figure B.182: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = -.9$.

Figure B.183: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = -.5$.

Figure B.184: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = -.5$.

Figure B.185: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = 0$.

Figure B.186: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = 0$.

Figure B.187: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = .5$.

Figure B.188: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = .5$.

Figure B.189: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = .9$.

Figure B.190: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .5$ and $\phi_2 = .9$.

Figure B.191: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = -.9$.

Figure B.192: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = -.9$.

Figure B.193: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = -.5$.

Figure B.194: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = -.5$.

Figure B.195: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = 0$.

Figure B.196: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = 0$.

Figure B.197: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = .5$.

Figure B.198: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = .5$.

Figure B.199: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency 0 plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = .9$.

Figure B.200: RMSE of Local Quadratic spectral estimation (solid) and Local Log Periodogram estimation (dashed) at frequency π plotted as a function of δ , based on a sample of size n = 800 of a Polynomial Gaussian process with $\phi_1 = .9$ and $\phi_2 = .9$.