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1 Model-based regression and bootstrap

With the advent of widely accessible powerful computing in the late 1970s, computer-
intensive methods such as resampling and cross-validation created a revolution
in modern statistics. Using computers, statisticians became able to analyze big
datasets for the first time, paving the way towards the ‘big data’ era of the 21st
century. But perhaps more important was the realization that the way we do the
analysis could/should be changed as well, as practitioners were gradually freed
from the limitations of parametric models. For instance, the great success of the
bootstrap was in providing a complete framework for statistical inference under a
nonparametric setting much like Maximum Likelihood Estimation had done half a
century earlier under the restrictive parametric setup.

The original bootstrap of Efron (1979) was designed for data Y1, . . . , Yn that
are independent and identically distributed (i.i.d.). However, it was soon realized
that one can resample residuals from a model as if they were i.i.d. To fix ideas, let
us first focus on regression, i.e., data that are pairs: (Y1, X1), (Y2, X2), . . . , (Yn, Xn)
where Yi is the measured response associated with a (deterministic) regressor value
of Xi. The standard homoscedastic additive model in this situation reads:

Yi = µ(Xi) + ϵi (1)

where the ϵi are i.i.d. from a distribution F (·) with mean zero; consider three cases:

Parametric model: Both µ(·) and F (·) belong to parametric families of func-
tions, e.g., µ(x) = β0 + β1x and F (·) is N(0, σ2).

Semiparametric model: µ(·) belongs to a parametric family but F (·) does not.
Nonparametric model: Neither µ(·) nor F (·) can be assumed to belong to
parametric families of functions. Instead, it is typically assumed that µ(·) belongs
to some smoothness class, e.g., it is twice differentiable.

Whether the model is parametric, semiparametric or nonparametric, the prac-
titioner will typically estimate µ(·) by a consistent estimator µ̂(·), and construct the
residuals ei = Yi− µ̂(Xi). Consistency will then imply that the residual ei is a good
proxy for the unobserved error ϵi when n is large. Since Eϵi = 0, it is advisable to
center the residuals, i.e., define ri = ei−n−1

∑
j ej , and use ri as a proxy for ϵi. We

can then resample the ris as if they were i.i.d. yielding r∗1 , . . . , r
∗
n; we then create

a bootstrap dataset (Y ∗
1 , X1), (Y

∗
2 , X2), . . . , (Y

∗
n , Xn) by letting Y ∗

i = µ̂(Xi) + r∗i .
Finally, we re-compute the estimator µ̂(·) on many such bootstrap datasets, and
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witness how it varies across different datasets in order to gauge its accuracy; this
procedure is called a residual bootstrap—see e.g. Efron and Tibshirani (1993).

2 Model-free regression and bootstrap

Even under the flexible nonparametric setup, eq. (1) constitutes a model, and can
thus be rather restrictive. For example, the well known cps71 dataset from the np
package of R has been a workhorse for nonparametric function estimation. As it
turns out, it can not be modelled by eq. (1) even after allowing for heteroscedasticity
of the errors— see Ch. 4.2 of Politis (2015).

Nevertheless, it is possible to shun eq. (1) altogether and instead adopt a
model-free regression setup. The deterministic design case is described below but a
random design is also possible—see Wang and Politis (2021).

Model-free regression: The variables X1, . . . , Xn are deterministic, and the
random variables Y1, . . . , Yn are independent with common conditional distribu-
tion, i.e., P{Yj ≤ y|Xj = x} = Dx(y) not depending on j.

Inference for features, i.e. functionals, of the common conditional distribution
Dx(·) is still possible under some regularity conditions, e.g. smoothness. Arguably,
the most important such feature is the conditional mean E(Y |X = x) that can
be denoted µ(x). When µ(x) can be assumed smooth, it can be consistently esti-
mated by a nonparametric estimator µ̂(x); the procedure is completely analogous
to nonparametric estimation of µ(x) under model (1).

The question is: how to gauge the accuracy of µ̂(x) without assuming eq. (1)?
The Model-free bootstrap comes to the rescue; to describe it, we briefly move
away from the regression setup, and consider a data vector Y n = (Y1, . . . , Yn)

′

whose elements are not i.i.d.; this can be either because they are not identically
distributed (a regression effect), or not independent (a time series effect), or both.
The practitioner now uses the structure of the problem in order to find an invert-
ible transformation Hn that can map the non-i.i.d. vector Y n to a vector
ϵn = (ϵ1, . . . , ϵn)

′ that has i.i.d. components. Letting H−1
n denote the inverse

transformation, we have ϵn = Hn(Y n) and Y n = H−1
n (ϵn), i.e.,

Y n
Hn7−→ ϵn and ϵn

H−1
n7−→ Y n. (2)

Under regularity condition such a transformation always exists but is not unique—
see Ch. 2.3.3 of Politis (2015). It is up to the ingenuity of the practitioner to employ
a transformation Hn whose form is easily estimable from the data at hand.

Let Ĥn denote the data-based estimate of Hn, and define en = Ĥn(Y n); we
will use ei as a proxy for ϵi. The Model-Free bootstrap procedure goes as follows:
resample the eis as if they were i.i.d. yielding e∗1, . . . , e

∗
n; let e

∗
n = (e∗1, . . . , e

∗
n)

′, and

construct a bootstrap data vector by Y ∗
n = Ĥ−1

n (e∗n). We can now re-compute our
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estimator of interest on many such bootstrap datasets, and witness how it varies
across different datasets in order to gauge its accuracy.

Going back to the regression setup, it is apparent that the transformation Hn

will depend on the regressor values X1, . . . , Xn. To fix ideas, assume the Model-
free regression setup with the distribution Dx(y) assumed continuous in both x
and y. Letting ϵi = DXi

(Yi), it is apparent that ϵ1, . . . , ϵn are i.i.d. Uniform (0,1)
by the probability integral transform. Assuming that for each x, the function
Dx(·) is one-to-one, we may then write Yi = D−1

Xi
(ϵi), thus verifying both parts of

eq. (2). Although Dx(y) will generally be unknown, it is straightforward to employ

a nonparametric estimator D̂x(y) to construct Ĥn; see Politis (2013). Consequently,

ei = D̂Xi
(Yi) will be our proxy for ϵi.

Variations to this theme are possible. For example, the bootstrap data vector
Y ∗

n = Ĥ−1
n (e∗n) where e∗n = (e∗1, . . . , e

∗
n)

′ can be obtained either by resampling the
proxies (e1, . . . , en) as already discussed or by i.i.d. sampling from a Uniform (0,1).
The latter was termed a Limit Model-free (LMF) bootstrap by Politis (2015) since
it employs the theoretical distribution of the ϵis which is the limiting distribution
of the eis. Interestingly, the LMF approach retains its validity even when Dx(·)
and/or D̂x(·) are not invertible; in this case, Y ∗

i = D̂−1
Xi

(e∗i ) with e∗1, . . . , e
∗
n drawn

i.i.d. Uniform (0,1), and D̂−1
x (·) denoting the quantile inverse of distribution D̂x(·).

Further examples of transformations applicable to diverse settings with re-
gression and/or time series data are discussed in Wang and Politis (2022). Beyond
inference on parameters, e.g. confidence intervals, hypothesis tests, etc., the Model-
free bootstrap is also applicable to predictive inference, e.g. prediction intervals; the
latter would then follow the Model-free Prediction Principle of Politis (2015).
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