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Abstract

The problem of linear interpolation in the context of a multivariate time series having multiple

(possibly non-consecutive) missing values is studied. A concise formula for the optimal interpo-

lating filter is derived, and illustrations using two simple models are provided.

Keywords: Imputation, infinite past, linear filter, prediction.

1 Introduction

In the setting of a covariance-stationary, mean zero time series {Xt, t ∈ Z}, the standard linear

prediction problem amounts to extrapolating the one-step ahead (or multiple steps ahead) value

based on the observed past; this is typically done via orthogonal projection of the random variable

of interest on the linear span of the observed data—see e.g. Ch. 2 of Brockwell and Davis (1991).

The interpolation problem is closely related but now we assume that the entire time series has been

observed except one particular value. Because of stationarity, and without loss of generality, we

may assume that the missing value is X0, i.e., the data consist of {Xt, t ∈ Z \ {0}}. Then, the goal

is to ‘predict’ X0 as a linear function of the data {Xt, t ∈ Z \ {0}}; this is also done via orthogonal

projection—see Wiener (1949) who pioneered the projection technique.

The one-step ahead prediction problem has as its solution the autoregressive coefficients of the

process; see e.g. Ch. 6.1 of McElroy and Politis (2020). By contrast, the optimal interpolation

problem leads to the notion of inverse autocorrelations; see e.g. Politis (1992). Cleveland (1972)

apparently coined this term, but the solution to the interpolation problem was developed much
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earlier; see Chapter 2.3 of Grenander and Rosenblatt (1957), as well as Wiener’s (1949) original

monograph. Working concurrently in the Soviet Union, Kolmogorov (1941) also studied the inter-

polation problem. Later developments include Masani (1960), Chapter 2 of Rozanov (1967), Salehi

(1979), Franke (1984), Pourahmadi (1989), and Cheng and Pourahmadi (1997). More recently,

further results have been obtained by Bondon (2005), Kasahara et al. (2009), and Inoue (2021);

Lepot et al. (2017) provides a recent review.

Interpolation and extrapolation have been also well-studied in the context of a multivariate

time series; see Ch. 6 of Hannan (1970), as well as some of the above references, such as Masani

(1960). In the context outlined above interpolation results have only been obtained for the case

of a single missing value or consecutive stretches of missing values – as discussed in Inoue (2021).

(There is an extensive literature treating the missing value problem for finite-length samples, for

example using the Kalman filter, but in this note we are focused on infinite-length samples.) The

key novelty of our work, with respect to prior literature, is to provide interpolation formulas for the

case of general, possibly non-consecutive, patterns of missing values present in multivariate time

series. In Section 2 we derive the form of the optimal linear interpolator in the general multivariate

case; application to the univariate case is immediate. Section 3 shows the validity of the optimal

interpolating filter in the case of possibly slow decay of the autocovariances. Illustrations using two

simple models are provided in Section 4. Appendix A presents some background on optimal linear

prediction in the multivariate case, while Appendix B contains the technical proofs.

Remark 1 The objective of our paper is to derive the formula for the mean squared error optimal

linear interpolator with multiple missing values; this is a theoretical result without regard to any

data, following the Wiener-Kolmogorov theory of linear prediction as Hilbert space projection.

Having derived the formula of the optimal filter, its coefficients could indeed be estimated from

data by one of the usual methods, e.g., Method of Moments, Least Squares, pseudo Maximum

Likelihood, etc.

2 Optimal Linear Interpolation of Multiple Missing Values

Consider a covariance-stationary, mean zero, multivariate time series {Xt, t ∈ Z} with autocovari-

ance at lag h denoted by γh = EXtX
′
t−h where ′ denotes the transpose; each Xt is an N -dimensional

column vector, and therefore γh is an N ×N matrix. A typical assumption is that the autocovari-

ance generating function γ(z) =
∑

h∈Z γhz
h is well-defined for z in some annulus about the unit

circle of the complex plane; this converging power series in both powers of z and z−1 is called a

Laurent series, and characterizes a holomorphic function of a complex variable. In this case, the

spectral density of the time series {Xt} is given by the function f(λ) = γ(eiλ) for λ ∈ [−π, π].

If the determinant of γ(z) has no zeroes on the unit circle, then the function ξ(z) = γ(z)−1

is also holomorphic on some annulus about the unit circle. Consequently, it has a converging
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Laurent series expansion ξ(z) =
∑

h∈Z ξhz
h for some coefficients {ξh}h∈Z that we will call the

inverse autocovariances; therefore, ξ(z) is the inverse autocovariance generating function. We can

also define the inverse autocorrelation at lag h by ζh = ξ−10 ξh; see also Ch. 6.3 of McElroy and

Politis (2020).

Our goal is to derive a linear filter to predict a finite number of missing values that are assumed

to be completely missing (i.e., either all or none of the components of each random vector are

available)1. There will be one filter for each missing value, which is viewed as the target – just like

there is one filter for each forecast lead in a multi-step ahead forecasting problem.

We need a reference time t, in terms of which to formulate the filters. Because of stationarity,

this is not too important; hence, for ease of exposition, we choose t = 0 as the reference point.

Then, the missing value times will be denoted as k ∈M ; we assume to have m missing values where

m = |M | < ∞ (here |M | denotes the number of elements in the set M). The elements of M are

indexed in some way, and can be written M = {j1, j2, . . . , jm}. Without loss of generality, suppose

these are ordered such that j1 < j2 < . . . < jm (these integers are of course distinct).

Fix k ∈ M . The dataset available to predict the specific missing value Xk is {Xj}j 6∈M . To

predict Xk from {Xj}j 6∈M we can employ the linear predictor

X̂k =
∑
j 6∈M

πjXj . (1)

The filter coefficients πj are N ×N -dimensional matrices; they depend on k, but we suppress this

to facilitate the notation. The challenge is to identify the optimal linear predictor, i.e., identify the

optimal coefficients πj that minimize the Mean Square Error (MSE) of prediction2 that is defined

as E(Xt−k − X̂t−k)(Xt−k − X̂t−k)
′
.

Note that the filter (1) does not rely on any values that are missing. Hence, we can re-write

the predictor (1) as

X̂k =
∑
j∈Z

πjXj (2)

with the understanding that πj = 0 for j ∈ M ; we call these the zero constraints of the filter.

Apparently, (2) can be expressed as X̂k = π(B−1)X0, where B is the backshift operator (and B−1

is a forward shift), i.e., BXt = Xt−1. The function π(z) is then defined via

π(z) =
∑
j∈Z

πjz
j =

∑
j 6∈M

πjz
j . (3)

In our main result below, we identify the function π(z) associated with the optimal linear filter.

Note that knowledge of π(z) for all z in an annulus about the unit circle is tantamount to knowing

1This assumption precludes the handling of mixed frequency data – where a lower frequency section of the time

series is viewed as a higher frequency time series observed with missing values – as well as ragged edge data (where

the vector components at a particular time point may be partially missing).
2Minimization of the MSE matrix is considered in the usual way, in the sense of an ordering of non-negative

definite matrices; see Appendix A.
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the coefficient sequence {πj , j ∈ Z}; to see why, we can plug z = e−iλ (where i =
√
−1) into (3),

yielding the Fourier series

π(e−iλ) =
∑
j∈Z

πje
−ijλ. (4)

Consequently, the j–th Fourier coefficient of the function π(e−iλ) is given by

πj = (2π)−1
∫ π

−π
π(e−iλ)eijλdλ. (5)

To facilitate notation, in what follows we will denote 〈g(z)〉 = (2π)−1
∫ π
−π g(e−iλ)dλ; we will also

employ the following assumption:

Assumption A. Assume that the autocovariance generating function γ(z) =
∑

h∈Z γhz
h is well-

defined for z in some annulus about the unit circle of the complex plane. Further assume that the

determinant of γ(z) has no zeroes on the unit circle, i.e., that γ(z) 6= 0 whenever |z| = 1.

Theorem 1 Assume Assumption A. Then, we can compute the inverse autocovariances via

ξh = 〈z−hγ(z)−1〉. (6)

Furthermore, the MSE–optimal linear predictor of Xk given data {Xj}j 6∈M , where M = {j1, j2,
. . . , jm}, is given by (1). Letting k = ju, and setting πjr = 0 for 1 ≤ r ≤ m, the formula for

π(z) =
∑

j∈Z πjz
j is given by

π(z) = Izk − Eu Ξ−1 Z ξ(z−1), (7)

where Eu = e′u ⊗ I. Here, I denotes the N × N identity matrix, ⊗ denotes Kronecker product,

eu is a dimension m unit vector (with one in position u for 1 ≤ u ≤ m, and zero else), Ξ is a

mN × mN -dimensional block Toeplitz matrix with rs–th block entry (for 1 ≤ r, s ≤ m) given by

ξjr−js, and Z = z ⊗ I, where z is a vector with entries zjr for 1 ≤ r ≤ m.

Finally, the optimal predictor’s MSE matrix equals Eu Ξ−′E′u, where −′ denotes inverse trans-

pose.

Remark 2 The filter formula (7) automatically generates the zero constraints, because the jth

coefficient is given by

πj = I1{j=k} −
m∑
r=1

Ξ−1u,r ξjr−j , (8)

where 1{j=k} is the indicator of set {j = k}. If j ∈M then j = jv for some 1 ≤ v ≤ m, implying

πj = 1{v=u} −
m∑
r=1

Ξ−1u,r Ξr,v = 1{v=u} −
(
Ξ−1Ξ

)
u,v

= 0

(since ξjr−jv = Ξr,v). The pattern of the non-zero weights depends on whether the missing values

are clustered (i.e., contiguous) or isolated from one another, as this impacts the structure of Ξ.
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The results are somewhat easier to state in the univariate case (N = 1), as summarized in the

following corollary. Note that in this case the autocovariance generating function γ(z), as well as

its inverse γ(z)−1, are real-valued (scalar) functions. Historically, this univariate case has been of

great interest; Masani (1960), Rozanov (1967), and Inoue (2021) discuss the situation where all the

missing values are consecutive.

Corollary 1 Assume Assumption A, and that N = 1, i.e., the univariate case. Then, we can

compute the inverse autocovariances via (6) as before.

The MSE–optimal linear predictor of Xk given data {Xj}j 6∈M , where M = {j1, j2, . . . , jm}, is

given by (1). Letting k = ju, and setting πjr = 0 for 1 ≤ r ≤ m, the formula for π(z) =
∑

j∈Z πjz
j

is given by

π(z) = zk − e′u Ξ−1 z ξ(z−1), (9)

where eu is a dimension m unit vector (with one in position u for 1 ≤ u ≤ m, and zero else), Ξ is

a m×m-dimensional Toeplitz matrix with rs–th entry (for 1 ≤ r, s ≤ m) given by ξjr−js, and z is

a vector with entries zjr for 1 ≤ r ≤ m.

Finally, the optimal predictor’s MSE equals e′u Ξ−′ eu, where −′ denotes inverse transpose.

3 Optimal Linear Interpolation in the Case of a Possible Slow

Decay of the Autocovariances

In the previous section, it was assumed that the autocovariance generating function γ(z) is well-

defined over an annulus about the unit circle. However, this presupposes that the autocovariances

γh decay to zero exponentially fast as the lag h increases. While this is true in many cases, e.g. in

stationary ARMA models, there are certainly situations where γh only decays slowly in h, with a

polynomial rate. Even in such a case, the optimal interpolating filter would still be given by eq. (7)

of Theorem 1 provided the infinite sums implicit in this formula are well-defined.

Recall that the coefficients of the optimal filter can be computed via the values of γ(z) for z

on the unit circle; see eq. (4) and (5). Hence, we may focus our attention to the spectral density

f(λ) = γ(e−iλ), and try to find a sufficient condition for the optimal filter (7) to be well-defined.

To this end, we are aided by Wiener’s lemma; see Wiener (1932) for the original, and Sun (2007)

or Shin and Sun (2013) for extensions and elaborations.

In the univariate case (N = 1), the classical Wiener’s lemma states that if a periodic function

f(λ) has an absolutely convergent Fourier series and never vanishes, then 1/f(λ) also has an abso-

lutely convergent Fourier series. We will formulate a multivariate version of Wiener’s lemma that

will help us define the inverse autocovariances when γ(z) is well-defined only on the unit circle. Let

‖ · ‖2 denote the matrix 2-norm3; we will require the following assumption:

3Alternatively, we can use the matrix Frobenius norm in the result’s formulation.
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Assumption B. Assume that the autocovariances γh have summable matrix 2-norm, i.e.,
∑

h∈Z ‖γh‖2 <
∞, and that the determinant of f(λ), denoted by det f(λ), does not vanish for λ ∈ [−π, π].

The following is a multivariate version of Wiener’s lemma that is sufficient for our purposes. The

result is not necessarily new in view of the general Banach space theorems of Bochner and Phillips

(1942). Nevertheless, for completeness and concreteness, we provide a statement and proof in the

finite-dimensional matrix setting.

Lemma 1 Suppose that f(λ) = γ(e−iλ) satisfies Assumption B. Then the inverse f(λ)−1 is well-

defined for λ ∈ [−π, π], and has Fourier coefficients {ξh} with summable matrix 2-norm.

Under the conditions of the above Lemma, the function ξ(e−iλ) = γ(e−iλ)
−1

will have an abso-

lutely convergent Fourier series ξ(e−iλ) =
∑

h∈Z ξhe
−ihλ. The coefficients {ξh}h∈Z are the inverse

autocovariances; note that this is identical to eq. (6). The inverse autocorrelations are defined by

ζh = ξ−10 ξh as before. In view of Lemma 1, the following is immediate.

Theorem 2 Assume Assumption B instead of Assumption A. Then, the conclusions and formulas

of Theorem 1 remain valid.

Remark 3 It is also shown in the proof of Lemma 1 that the absolute value of each component

of both f and f−1 has an absolutely convergent Fourier series – and in particular is absolutely

integrable over [−π, π] – hence impying that (1.2) and (1.3) of Inoue (2021) hold. Therefore

Assumption B implies “minimality”, a concept defined by Kolmogorov – see Masani (1960), which

essentially states that Xt (for any t ∈ Z) cannot be perfectly predicted from all the other random

variables {Xs}s 6=t of the stochastic process. Hence, Theorem 2 could also be proved by assuming

minimality instead of Assumption B. However, we note that Assumption B is a weak assumption

that is convenient to verify. For example, in the univariate case, assuming absolute summability of

the autocovariances is easily checked, and moreover is necessary to ensure that the spectral density

f is well-defined.

For completeness, we also state the corollary in the univariate case.

Corollary 2 Assume N = 1. Instead of Assumption A, assume that the autocovariances γh are

absolutely summable, and that f(λ) does not vanish for λ ∈ [−π, π]. Then, the conclusions and

formulas of Corollary 1 remain valid.

4 Illustrations

In this section we consider two illustrations: a VAR(1) and a VMA(1), i.e., a Vector Autoregressive

model of order 1, and a Vector Moving Average model of order 1; these are both examples where
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the autocovariance generating function is well-defined over an annulus. Within the multivariate

examples, we also examine the case of N = 1 as well.

4.1 VAR(1)

Suppose that {Xt} is a VAR(1) process with coefficient matrix Φ and innovation covariance Σ, i.e.,

Xt = ΦXt−1 + Zt where Zt is a mean zero white noise with Σ = EZtZ ′t. In this case,

γ(z) = (I − Φz)−1 Σ(I − Φ′z−1)
−1

ξ(z) = (I − Φ′z−1) Σ−1 (I − Φz)

ξ0 = Σ−1 + Φ′Σ−1 Φ

ξ1 = −Σ−1 Φ.

All but three of the inverse autocovariances are zero, and hence the summation in (8) can involve

at most three terms, involving ξ−1, ξ0, ξ1. The structure of Ξ is

Ξ =



ξ0 ξj1−j2 0 . . . 0

ξj2−j1 ξ0 ξj2−j3 0 . . .

0 ξj3−j2 ξ0 ξj3−j4 0
...

. . .
. . .

. . .
. . .

0 . . . 0 ξjm−jm−1 ξ0


.

Only the block diagonal, the super-diagonal, and the sub-diagonal are non-zero, and some of these

entries can even be zero – the matrix is not Toeplitz in general. For instance, on the super-diagonal

each entry is an inverse autocovariance based at a lag that is a consecutive difference of elements

of M , and is zero unless this lag equals 1. Hence, entries of the super-diagonal are zero unless they

correspond to consecutive (clustered) missing values.

To make the illustration more concrete, suppose that M = {0, 1, 3}, which means there are two

consecutive missing values at times 0 and 1, but an isolated missing value at time 3. Then we find

Ξ =


ξ0 ξ−1 0

ξ1 ξ0 0

0 0 ξ0



Ξ−1 =


ξ−10 + ξ−10 ξ−1S

−1ξ1ξ
−1
0 −ξ−10 ξ−1S

−1 0

−S−1ξ1ξ−10 S−1 0

0 0 ξ−10


S = ξ0 − ξ1ξ−10 ξ−1.

Because of this structure of missing values, π0 = π1 = π3 = 0; also from (8) and the fact that ξh = 0

for |h| > 1, we find πj = 0 if j > 4 or j < −1. So only π−1, π2, and π4 are non-zero, and their
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values depends on which of the three missing value filters we are considering. Setting ζh = ξ−10 ξh,

for k = 0 the coefficients are

π−1 = −
(
ξ−10 + ξ−10 ξ−1S

−1ξ1ξ
−1
0

)
ξ1 = −(I − ζ−1ζ1)−1ζ1

π2 = ξ−10 ξ−1S
−1ξ−1 = ζ−1 (I − ζ1ζ−1)−1ζ−1

π4 = 0,

which shows that only observations at either side of the cluster of missing values get weighted; also

their weights are different, which makes sense because observation X1 has more to say about X0

than does observation X2, because it is closer (and hence has a higher degree of association) in lag

distance.

Special case: N = 1. In the univariate case, the coefficients simplify to

π−1 = − ζ1
1− ζ21

π2 =
ζ21

1− ζ21
,

using ζ−1 = ζ1. Clearly π2 = −ζ1π−1 and hence |π2| < |π−1|. Next, the coefficients for the k = 1

filter are

π−1 = S−1ξ1ξ
−1
0 ξ1 = ζ1 (I − ζ−1ζ1)−1 ζ1

π2 = −S−1ξ−1 = −(I − ζ1ζ−1)−1ζ−1

π4 = 0.

Again there is no contribution from X4, but we see the weights for π−1 and π2 are similar to

those of π2 and π−1 (respectively) in the k = 0 filter, only with ζ1 and ζ−1 interchanged. This is

appropriate, and in the univariate case the weights exactly correspond. Finally, the coefficients for

the k = 3 filter are

π−1 = 0

π2 = −ξ−10 ξ1 = −ζ1

π4 = −ξ−10 ξ−1 = −ζ−1,

which provides equal weights in the univariate case for the observations on either side of the isolated

missing value X3. As a final remark, it is simple to see that the weight πj does not depend on Σ

when N = 1, because it cancels out, but when N > 1 the matrix Σ cannot be manipulated in this

way, and the filter coefficients will depend on Σ.

4.2 VMA (1)

Suppose that {Xt} is a VMA(1) process written with a minus convention (for convenience in the

following formulas): Xt = Zt − Θ′Zt−1, where {Zt} is a mean zero white noise with covariance
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matrix Σ. This is an atypical parameterization of a VMA(1), where we have written −Θ′ where

one would usually expect to see Θ, but this is only done so that the following formulas are less

cluttered. It follows that

γ(z) = (I −Θ′z) Σ (I −Θz−1)

ξ(z) = (I −Θz−1)
−1

Σ−1 (I −Θ′z)
−1

ξh =
∑
k≥0

Θh+kΣ−1Θ′k = Θhξ0 h ≥ 0.

As a result the structure of Ξ is

Ξ =


ξ0 ξ0Θ

j2−j1 ′ ξ0Θ
j3−j1 ′ . . .

Θj2−j1ξ0 ξ0 ξ0Θ
j3−j2 ′ . . .

...
. . .

. . .
. . .

. . . Θjm−jm−2ξ0 Θjm−jm−1ξ0 ξ0

 .

This block matrix is highly structured, but in general is not block Toeplitz.

For a concrete illustration, suppose that M = {0, `} for some ` > 0, which means there are two

missing values that are clustered when ` = 1. Then we find

Ξ =

[
ξ0 ξ0Θ

`′

Θ`ξ0 ξ0

]

Ξ−1 =

[
(I + ζ−`[I − ζ`ζ−`]−1ζ`)ξ−10 −ζ−`[I − ζ`ζ−`]−1ξ−10

−[I − ζ`ζ−`]−1ζ`ξ−10 [I − ζ`ζ−`]−1ξ−10

]

πj =

I1{j=0} − [I − ζ−`ζ`]−1(ζ−j − ζ−`ζ`−j) if k = 0

I1{j=`} − [I − ζ`ζ−`]−1(ζ`−j − ζ`ζ−j) if k = `.

We can directly see that these coefficients satisfy the zero constraints.

Special case: N = 1. In the univariate case, we can make some further simplifications, because

ζh = θ|h| writing the scalar θ for Θ′; recall that in the multivariate case ζh 6= ζ−h in general. If

k = 0, then

πj =


1{j=0} − θ−j if j ≤ 0

−(1− θ2`)−1(θj − θ2`−j) if 0 < j < `

0 if j ≥ `,

and if k = ` then

πj =


1{j=`} − θj−` if j ≥ `

−(1− θ2`)−1(θ`−j − θ`+j) if 0 < j < `

0 if j ≤ 0.
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One interesting feature is that the coefficients truncate on one side of the filter, past where the

second missing value is placed – this differs from the case of a single missing value, where all

coefficients (except π0) are nonzero.
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Appendix A Minimal MSE Matrix and Optimal Linear Predic-

tion

For symmetric non-negative definite matrices A and B, we say that A ≥ B if and only if A−B is

non-negative definite, which we can denote as A−B ≥ 0. A predictor is said to have minimal MSE
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matrix Σ if and only if any other predictor has MSE matrix Σ̃ ≥ Σ. Any optimal linear prediction

satisfies the normal equations, and hence has minimal MSE matrix, which can be shown as follows.

Let X̂ be the optimal linear predictor of some random vector X. Then,

Σ = E(X − X̂)(X − X̂)
′

by definition of MSE matrix. By the normal equations, the error X − X̂ is orthogonal to all linear

functions of the information set (i.e., the random variables used to form the prediction). Hence any

other linear predictor X̃ has MSE matrix

Σ̃ = E(X − X̃)(X − X̃)
′

= E
(

(X − X̂) + (X̂ − X̃)
)(

(X − X̂) + (X̂ − X̃)
)′

= Σ + E(X̂ − X̃)(X̂ − X̃)
′
,

using the fact that X̂ − X̃ is a linear function of the information set, and hence is orthogonal to

X − X̂. Therefore

Σ̃− Σ = E(X̂ − X̃)(X̂ − X̃)
′
,

a non-negative definite matrix; hence, Σ̃ ≥ Σ. 2

Appendix B Technical Proofs

Proof of Theorem 1. First note that Assumption A implies that ξ(z) = γ(z)−1 is also holo-

morphic on some annulus about the unit circle, i.e., it has the converging Laurent series expansion

ξ(z) =
∑

h∈Z ξhz
h; hence, eq. (6) follows. Now, the normal equations for the optimal predictor are

EX̂kX
′
` = EXkX

′
`

for all ` 6∈M . This is equivalent to ∑
j∈Z

πj γj−` = γk−`

or

〈z`π(z−1)γ(z)〉 = 〈z`−kγ(z)〉.

Mapping z 7→ z−1 by change of variable and consolidating, we have

0 = 〈z−`(Izk − π(z))γ(z−1)〉

for all ` 6∈ M . We know the function z−`(Izk − π(z))γ(z−1) is a Laurent series, and the above

equation says that the `th coefficient of (Izk − π(z))γ(z−1) is zero unless ` ∈M . Hence there exist

real N ×N -dimensional coefficient matrices {ch}h∈M such that

(Izk − π(z))γ(z−1) =
∑
h∈M

chz
h.
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Solving for π(z), we obtain

π(z) = Izk −
∑
h∈M

chz
h ξ(z−1). (A.1)

Now we apply the zero constraints by integrating (A.1) against z−` for each ` ∈M :

0 = π` = 〈z−`π(z)〉 = I1{`=k} −
∑
h∈M

ch〈zh−`ξ(z−1)〉 = I1{`=k} −
∑
h∈M

ch ξh−`.

These arem linear equations inm (matrix) unknowns, and are easily solved. Let C = [cj1 , cj2 , . . . , cjm ];

recalling that k = ju, our system is written

C Ξ = [0, . . . , 0, I, 0, . . . , 0] ,

where the identity matrix is in position u among m slots. Therefore C = Eu Ξ−1, with invertibility

guaranteed because the corresponding spectral density ξ(e−iλ) is invertible for all λ. Plugging into

(A.1) yields (7). Note that E′uΞ−1 is just the u-th block row of Ξ−1.

To compute the MSE, recall that B is the backshift operator. The prediction error is

Xk − X̂k = (B−k − π(B−1))X0 =
∑
h∈M

chB
−h ξ(B−1)Xt,

which has mean zero with variance matrix

〈
∑
h∈M

chz
−h ξ(z)f(z)ξ(z−1)

′ ∑
`∈M

c′`z
`〉

=
∑
h,`∈M

ch〈z`−hξ(z−1)
′〉c′`

=

m∑
r,s=1

cjrξjr−jsc
′
js

= C ΞC ′ = Eu Ξ−′E′u;

this is the uu–th block matrix of Ξ−1. 2

Proof of Lemma 1. The crux of the argument is that for each λ the matrix f(λ) is invertible

if and only if its determinant is non-zero; but det f(λ) is a scalar quantity, to which we can apply

the original Wiener’s lemma. Recall the formula

f(λ)−1 =
1

det f(λ)
f(λ)], (A.2)

where f(λ)] is called the adjoint matrix. Note that f(λ)] is well-defined for any λ, because its

matrix entries are given by finite sums and products of the entries of f(λ); see e.g. Artin (1991).

First, we establish that the Fourier coefficients of the adjoint have square summable matrix 2-norm.
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Let the kth Fourier coefficient of the adjoint be denoted τk = 〈z−kγ(z)]〉. Let ‖ · ‖F denote the

Frobenius norm; then, by the Plancherel identity we have∑
k

‖τk‖2F = 〈‖γ(z)]‖2F 〉,

which also shows that a sufficient condition for the {τk} to have square summable matrix 2-norm

(in view of the fact that ‖A‖2 ≤ ‖A‖F for any matrix A) is that ‖γ(z)]‖2F has finite integral. By

the definition of adjoint,

‖γ(z)]‖2F =

N∑
r=1

N∑
s=1

| det [f(λ)]s,r|
2,

where the s, r subscript means that we remove the s-th row and r-th column before computing the

determinant. Because f(λ) is Hermitian, we do not need the absolute value bars, and for any r, s

we obtain

|det [f(λ)]s,r|
2 = det

(
[f(λ)]s,r[f(λ)]′s,r

)
≤
[
max eigenvalue

(
[f(λ)]s,r[f(λ)]′s,r

)]N
= ‖[f(λ)]s,r‖

2N

2
=

∥∥∥∥∥∑
k∈Z

e−iλk[γk]s,r

∥∥∥∥∥
2N

2

≤

(∑
k∈Z
‖[γk]s,r‖2

)2N

≤

(∑
k∈Z
‖[γk]s,r‖F

)2N

≤

(∑
k∈Z
‖γk‖F

)2N

.

In the above, we have used the fact that for a non-negative definite matrix the determinant is

bounded by the Nth power of the largest eigenvalue; we also used a well-known expression for the

matrix 2-norm, took the sub-matrix of f(λ) term by term, used the triangle inequality, noted that

the 2-norm is bounded by the Frobenius norm, and finally used the fact that the Frobenius norm

of a sub-matrix is bounded above by the Frobenius norm of the whole matrix. Because the matrix

Frobenius norm is bounded by a constant times the matrix 2-norm, it follows that the Frobenius

norm of the {γk} is summable, and hence the {τk} have square summable matrix 2-norm.

Next, we show that det f(λ) has absolutely summable Fourier coefficients. From the identity

det f(λ) IN = f(λ) f(λ)]

we find that the Fourier coefficients of det f(λ) IN are

〈z−k det γ(z) IN 〉 =
∑
j∈Z

γj 〈zj−kγ(z)]〉.

Applying the triangle inequality and the Hölder inequality for sequences (and letting C = ‖IN‖2),∑
k∈Z
|〈z−k det γ(z)〉| ≤ C−1

√∑
j∈Z
‖γj‖22

√∑
j∈Z
‖〈z−jγ(z)]〉‖22. (A.3)
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We have already shown square summability of the adjoint’s Fourier coefficients (with respect

to the matrix 2-norm), and the {γj} have summable, and hence square summable, matrix 2-norm

by Assumption B. Hence, det f(λ) has absolutely summable Fourier coefficients, and we can apply

Wiener’s lemma, thereby concluding that 1/ det f(λ) has an absolutely convergent Fourier series.

Finally, having shown the square summability of both factors on the right hand side of eq.

(A.2), a Hölder inequality argument similar to that leading to eq. (A.3) implies that the Fourier

coefficients of f(λ)−1 have summable matrix 2-norm. This completes the proof, but we also show

that any component of f or f−1 is absolutely integrable:

(2π)−1
∫ π

−π
|[f(λ)]s,r|dλ ≤

∑
k∈Z
|[γk]s,r| ≤

∑
k∈Z
‖γk‖F ≤

√
N
∑
k∈Z
‖γk‖2,

which is finite for any 1 ≤ r, s,≤ N . A similar argument holds for f−1. 2
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