Since Efron's (1979) profound paper on the bootstrap, an enormous amount of effort has been spent on the development of bootstrap, jackknife, and other resampling methods. The primary goal of these computer-intensive methods has been to provide statistical tools that work in complex situations without imposing unrealistic or unverifiable assumptions about the data-generating mechanism. Bootstrap methods often can achieve this goal, but like any statistical method, they cannot be applied without thought. While the bootstrap will undoubtedly serve as a widely used tool well into the 21st century, it sometimes can fail. Moreover, the asymptotic justification of the bootstrap is often peculiar to the problem at hand.

It was realized in Politis and Romano (1992c, 1994b) that a very general approach to constructing asymptotically valid inference procedures exists by appropriate use of subsampling. That is, the statistic of interest, such as an estimator or test statistic, is evaluated at subsamples of the data, and these subsampled values are used to build up an estimated sampling distribution. Historically, the roots of subsampling can be traced to Quenouille's (1949) and Tukey's (1958) jackknife. In fact, Mahalanobis (1946) suggested the use of subsamples to estimate standard errors in studying crop yields, though he used the term interpenetrating samples. Hartigan (1969, 1975) exploited the use of subsamples to construct confidence intervals and to approximate standard errors; he obtained some finite sample results in the symmetric location problem, as well as some asymptotic results for asymptotically normal statistics. Hartigan's constructions involve recalculating a statistic over all subsamples and all subsample sizes, but he also considers using only randomly chosen subsamples, or what he calls
balanced subsamples. Of course, the use of subsamples is quite related to the delete-d jackknife, which was developed mainly in the context of variance estimation; see Wu (1986) and Shao and Wu (1989). In the time series context, Carlstein (1986) considered the use of subsamples, or what he calls subseries, to approximate the variance of a statistic. Later, Wu (1990) realized how jackknife pseudo-values can be used for distribution estimation as well, but only in the context of independent, identically distributed (i.i.d.) observations when the statistic is approximately linear so that asymptotic normality holds; his arguments were specific to this context.

The main contribution presented here can be summarized as follows: the consistency properties of estimated sampling distributions based on subsampling hold under extremely weak assumptions, and even in situations where the bootstrap fails. In contrast to the aforementioned results, we can obtain quite general results by considering subsamples of fixed size (but depending on the sample size and possibly data-dependent). In fact, it is hard to conceive of a theory for the construction of confidence intervals that works (in a first order sense) under weaker conditions. Moreover, the mathematical arguments to justify such a claim are based on fairly simple ideas, thus allowing for ease of generalization. Therefore, we will consider subsampling not just in the usual context of independent and identically distributed observations, but also in the context of dependent data situations, such as time series, random fields, or marked point processes.

The idea of using subsamples as a diagnostic tool to describe the sampling distribution of an estimator was also considered in Sherman and Carlstein (1996). In the i.i.d. context, subsampling is closely related to the usual bootstrap, the main difference being resampling the data without replacement versus with replacement. It follows that the bootstrap also enjoys general first order consistency properties, but only if one is willing to resample at sizes much smaller than the original sample size, as noted in Politis and Romano (1992c, 1993c); the benefits of using a smaller resample size when bootstrapping are further exploited in Bickel, Götze, and van Zwet (1997). Of course, the usual bootstrap can work perfectly well, and it enjoys good higher order properties in some nice problems. Subsampling, on the other hand, is more generally applicable. Ultimately, it may be used as a robust starting point toward even more refined procedures (some of which we present).

The primary goal of this book is to lay some of the foundation for subsampling methodology and related methods. The book is laid out in two parts. Chapters 1–7 provide the basic theory of the bootstrap and subsampling. Chapter 1 is devoted to developing some of the basic consistency properties of the bootstrap. Obviously, one can write volumes about the bootstrap, and there are now several books whose main subject is the theoretical development of the bootstrap. Our purpose is to provide some mathematical tools needed in studying consistency properties of the bootstrap, thereby setting the stage for studying subsampling. Thus, this chapter serves as
a tutorial on the bootstrap that can be included in a graduate course on asymptotic methods. The chapter is largely based on Beran (1984) and one of the author’s lecture notes in a class on the bootstrap taught by Beran at U.C. Berkeley in the fall of 1983. Chapter 2 considers the use of subsampling in the case of independent and identically distributed observations. Some comparisons are made with the bootstrap. Chapter 3 considers subsampling stationary time series, and generalizations to the nonstationary or heteroskedastic case are presented in Chapter 4; the moving blocks bootstrap is also considered. Generalizations to random fields are developed in Chapter 5, and marked point processes are discussed in Chapter 6. In Chapter 7, a general theorem on subsampling is developed that allows the parameter space of interest to be quite abstract. This concludes the first of two parts of the book. The second part of the book is concerned with extensions of the basic theory, as well as practical issues in implementation and applications. Chapter 8 addresses complex situations where the convergence rate of the estimator is unknown since it depends on parameters that are not assumed known; subsampling is shown to be generally useful here as well. The issue of choice of block size is discussed in Chapter 9. Chapter 10 is devoted to higher-order accuracy and extrapolation. Two important cases where the convergence rate is unknown are detailed in Chapters 11 and 12. Chapter 11 considers the case of the mean with heavy tails (infinite variance), while Chapter 12 considers inference for an autoregressive parameter in the possibly integrated case. In Chapter 13, we consider a financial application by using subsampling to discuss whether stock returns can be predicted from dividend yields. The appendices contain some results on mixing sequences that are used throughout the book.

This book is intended for graduate students and researchers; it can be used for an advanced graduate course in statistics that assumes a basic knowledge of theoretical statistics usually taught at the first-year Ph.D. level. Even if one does not want to devote an entire course to subsampling, Chapters 1–3 are designed so that they can be included in any course on asymptotic methods in statistics.

We have benefitted from the support of many friends and colleagues. Special thanks are due to Patrice Bertail for his instrumental help toward the original development of the ideas in Chapters 8 and 10. Some of the book was presented in graduate courses taught at Stanford University and U.C. San Diego in 1997 and 1998, and we thank our students for providing helpful comments. We also would like to thank the National Science Foundation for supporting much of this research and writing over the past few years.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>I Basic Theory</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1 Bootstrap Sampling Distributions</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Pivotal Method</td>
<td>4</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Asymptotic Pivotal Method</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Asymptotic Approximation</td>
<td>6</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Bootstrap Approximation</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Consistency</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Case of the Nonparametric Mean</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Generalizations to Mean-like Statistics</td>
<td>16</td>
</tr>
<tr>
<td>1.5</td>
<td>Bootstrapping the Empirical Process</td>
<td>19</td>
</tr>
<tr>
<td>1.6</td>
<td>Differentiability and the Bootstrap</td>
<td>23</td>
</tr>
<tr>
<td>1.7</td>
<td>Further Examples</td>
<td>30</td>
</tr>
<tr>
<td>1.8</td>
<td>Hypothesis Testing</td>
<td>33</td>
</tr>
<tr>
<td>1.9</td>
<td>Conclusions</td>
<td>38</td>
</tr>
<tr>
<td>2 Subsampling in the I.I.D. Case</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>The Basic Theorem</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison with the Bootstrap</td>
<td>47</td>
</tr>
<tr>
<td>2.4</td>
<td>Stochastic Approximation</td>
<td>51</td>
</tr>
</tbody>
</table>
Contents

2.5 General Parameters and Other Choices of Root 52
 2.5.1 Studentized Roots .. 52
 2.5.2 General Parameter Space ... 53
2.6 Hypothesis Testing ... 54
2.7 Data-Dependent Choice of Block Size 59
2.8 Variance Estimation: The Delete-d Jackknife 62
2.9 Conclusions .. 64

3 Subsampling for Stationary Time Series 65
 3.1 Introduction ... 65
 3.2 Univariate Parameter Case ... 67
 3.2.1 Some Motivation: The Simplest Example 67
 3.2.2 Theory and Methods for the General Univariate Parameter Case ... 68
 3.2.3 Studentized Roots ... 74
 3.3 Multivariate Parameter Case ... 74
 3.4 Examples .. 77
 3.5 Hypothesis Testing .. 90
 3.6 Data-Dependent Choice of Block Size 92
 3.7 Bias Reduction .. 93
 3.8 Variance Estimation .. 95
 3.8.1 General Statistic Case ... 95
 3.8.2 Case of the Sample Mean 97
 3.9 Comparison with the Moving Blocks Bootstrap 98
 3.10 Conclusions .. 100

4 Subsampling for Nonstationary Time Series 101
 4.1 Introduction .. 101
 4.2 Univariate Parameter Case ... 102
 4.3 Multivariate Parameter Case ... 106
 4.4 Examples .. 108
 4.5 Hypothesis Testing and Data-Dependent Choice of Block Size 117
 4.6 Variance Estimation .. 117
 4.7 Conclusions .. 119

5 Subsampling for Random Fields ... 120
 5.1 Introduction and Definitions 120
 5.2 Some Useful Notions of Strong Mixing for Random Fields 121
 5.3 Consistency of Subsampling for Random Fields 123
 5.3.1 Univariate Parameter Case 123
 5.3.2 Multivariate Parameter Case 127
 5.4 Variance Estimation and Bias Reduction 129
 5.5 Maximum Overlap Subsampling in Continuous Time 132
 5.6 Some Illustrative Examples ... 134
5.7 Conclusions .. 137

6 Subsampling Marked Point Processes 138
6.1 Introduction .. 138
6.2 Definitions and Some Different Notions on Mixing 140
6.3 Subsampling Stationary Marked Point Processes 144
 6.3.1 Sampling Setup and Assumptions 144
 6.3.2 Main Consistency Result 146
 6.3.3 Nonstandard Asymptotics 149
6.4 Stochastic Approximation 151
6.5 Variance Estimation via Subsampling 154
6.6 Examples .. 155
6.7 Conclusions ... 158

7 Confidence Sets for General Parameters 159
7.1 Introduction ... 159
7.2 A Basic Theorem for the Empirical Measure 160
7.3 A General Theorem on Subsampling 164
7.4 Subsampling the Empirical Process 166
7.5 Subsampling the Spectral Measure 168
7.6 Conclusions ... 170

II Extensions, Practical Issues, and Applications 171

8 Subsampling with Unknown Convergence Rate 173
8.1 Introduction ... 173
8.2 Estimation of the Convergence Rate 177
 8.2.1 Convergence Rate Estimation: Univariate Parameter Case .. 177
 8.2.2 Convergence Rate Estimation: Multivariate Parameter Case ... 182
8.3 Subsampling with Estimated Convergence Rate 184
8.4 Conclusions ... 187

9 Choice of the Block Size 188
9.1 Introduction ... 188
9.2 Variance Estimation ... 189
 9.2.1 Case of the Sample Mean 189
 9.2.2 General Case .. 192
9.3 Estimation of a Distribution Function 193
 9.3.1 Calibration Method 194
 9.3.2 Minimum Volatility Method 197
9.4 Hypothesis Testing .. 200
 9.4.1 Calibration Method 200
9.4.2 Minimum Volatility Method 201
9.5 Two Simulation Studies 202
9.5.1 Univariate Mean 203
9.5.2 Linear Regression 204
9.6 Conclusions 206
9.7 Tables 208

10 Extrapolation, Interpolation, and Higher-Order Accuracy 213
10.1 Introduction 213
10.2 Background 216
10.3 I.I.D. Data: The Sample Mean 218
 10.3.1 Finite Population Correction 218
 10.3.2 The Studentized Sample Mean 219
 10.3.3 Estimation of a Two-Sided Distribution 220
 10.3.4 Extrapolation 221
 10.3.5 Robust Interpolation 224
10.4 I.I.D. Data: General Statistics 225
 10.4.1 Extrapolation 225
 10.4.2 Case of Unknown Convergence Rate to the
 Asymptotic Approximation 226
10.5 Strong Mixing Data 228
 10.5.1 The Studentized Sample Mean 228
 10.5.2 Estimation of a Two-Sided Distribution 231
 10.5.3 The Unstudentized Sample Mean and the General
 Extrapolation Result 232
 10.5.4 Finite Population Correction in the Mixing Case 235
 10.5.5 Bias-Corrected Variance Estimation for Strong
 Mixing Data 236
10.6 Moderate Deviations in Subsampling Distribution
 Estimation 244
10.7 Conclusions 251

11 Subsampling the Mean with Heavy Tails 253
11.1 Introduction 253
11.2 Stable Distributions 254
11.3 Extension of Previous Theory 257
11.4 Subsampling Inference for the Mean with Heavy Tails 260
 11.4.1 Appealing to a Limiting Stable Law 260
 11.4.2 Using Self-Normalizing Sums 263
11.5 Choice of the Block Size 265
11.6 Simulation Study 266
11.7 Conclusions 267
11.8 Tables 269