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Abstract: The Model-Free Prediction Principle has been successfully applied to general regression 1

problems, as well as problems involving stationary and locally stationary time series. In this paper we 2

demonstrate how Model-Free Prediction can be applied to handle random fields that are only locally 3

stationary such as pixel values over an image or satellite data observed on an ocean surface, i.e., they 4

can be assumed to be stationary only across a limited part over their entire region of definition. We 5

construct novel one-step-ahead Model-Based and Model-Free point predictors and compare their 6

performance using synthetic data as well as images from the CIFAR-10 dataset. In the latter case 7

we demonstrate that our best Model-Free point prediction results outperform those obtained using 8

Model-Based prediction. 9

Keywords: Kernel smoothing, linear predictor, random fields, nonstationary series, point prediction. 10

1. Introduction 11

Consider a real-valued random field dataset {Yt, t ∈ Z2} defined over a 2-D index- 12

set D e.g. pixel values over an image or satellite data observed on an ocean surface. It 13

may be unrealistic to assume that the stochastic structure of such a random field Yt has 14

stayed invariant over the entire region of definition D hence, we cannot assume that {Yt} 15

is stationary. Therefore it is more realistic to assume a slowly-changing stochastic structure, 16

i.e., a locally stationary model. The theory of locally stationary time series and parametric and 17

nonparametric methods for their estimation have been covered extensively in the literature 18

including references [1], [2], [3], [4], [5], [6], [7], [8]. In [9] we propose Model-Based and 19

Model-Free algorithms for point prediction and prediction intervals of locally stationary 20

time series and demonstrate their applications for both synthetic and real-life datasets. 21

Our work in this paper extends this framework to point prediction over locally stationary 22

random fields with applications involving synthetic and real-life image data. 23

In the context of random fields two principal modeling approaches are usually fol- 24

lowed in order to perform estimation. In the first case for fields of study such as economet- 25

rics and ecology where the sampling points can be irregular the random field data {Ys, s ∈ S} 26

is defined over a continuous subset S of Rd. Modeling strategies for such non-uniformly 27

spaced spatial data have been discussed in [10], [11]. Kernel estimation for locally stationary 28

random fields defined over such irregularly spaced locations has been proposed in [12] and 29

[13] while autoregressive estimation of similarly defined locally stationary random fields 30

has been proposed in [14]. In the other style of modeling the random field {Yt, t ∈ S} is 31

defined over a regularly spaced grid S ⊂ Zd. Examples of such applications arise in fields 32

of study such as image processing and radiography. Two dimensional (2D) autoregressive 33

models for such random fields covering various regions of support have been proposed 34

in [15]. Autoregressive estimation of such data regularly spaced on a lattice has also been 35

discussed in [16]. Applications of 2D autoregressive models for analysis and synthesis 36
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of textural images are shown in [17]. Local Linear based nonparametric estimators of 37

such random fields and their theoretical properties have been discussed in [18], [19]. In 38

this paper we assume a locally stationary model for random fields Yt ∈ R defined over 39

t ∈ S where S ⊂ Zd, d = 2. Given data Yt1 , Yt2 , . . . , Ytn , our objective is to perform point 40

prediction for a future unobserved data point Ytn+1 . Here t1, t2, . . . , tn, tn+1 ∈ Z2 denote 41

the coordinates of the random field over the 2-D index set D and the notion of a future 42

datapoint over a coordinate of a random field for purposes of predictive inference over 43

t ∈ Z2 is defined in Section 2. 44

The usual approach for dealing with locally stationary series is to assume that the data
can be decomposed as the sum of three components:

µ(t) + St + Wt

where µ(t) is a deterministic trend function, St is a seasonal (periodic) series, and {Wt} 45

is (strictly) stationary with mean zero. This type of decomposition has been proposed 46

for time series [20] and can also be used for decomposition of locally stationary random 47

field data. The seasonal (periodic) component, be it random or deterministic, can be easily 48

estimated and removed and having done that, the ‘classical’ decomposition simplifies to 49

the following model with additive trend, i.e., 50

Yt = µ(t) + Wt (1)

which can be generalized to accommodate a coordinate-changing variance as well, i.e., 51

Yt = µ(t) + σ(t)Wt. (2)

In both above models, the series {Wt} is assumed to be (strictly) stationary, weakly de- 52

pendent, e.g. strong mixing, and satisfying E(Wt) = 0; in model (2), it is also assumed 53

that var(Wt) = 1. The deterministic functions µ(·) and σ(·) are unknown and can be 54

assumed to belong to a class of functions that is either finite-dimensional (parametric) or 55

not (nonparametric). In this paper we focus on the nonparametric case and assume that 56

µ(·) and σ(·) have some degree of smoothness i.e. change smoothly (and slowly) with t. 57

Models (1) and (2) can be used to capture the first two moments of the locally stationary 58

random field; however it may be the case that the skewness and/or kurtosis of Yt changes 59

with t. In addition it may also be the case that the correlation Corr(Ytj , Ytj+1) changes 60

smoothly (and slowly) with tj ∈ Z2. To address this more general case we propose a 61

methodology for point prediction of locally stationary random fields that does not rely on 62

simple additive models such as (1) and (2). This is accomplished by using the Model-Free 63

Prediction Principle of [21], [22]. The key towards Model-Free inference is to be able to 64

construct an invertible transformation Hn : Ytn
7→ εn where Ytn

= (Yt1 , Yt2 , . . . , Ytn) denotes 65

the random field data under consideration and εn = (ε1, . . . , εn)′ is a random vector with 66

i.i.d. components. 67

The rest of the paper is arranged as follows. In Section 2 we set up the framework 68

for defining causality of random fields in order to enable us perform point prediction. In 69

Section 3 we visit the problem of Model-Based inference and develop a point prediction 70

methodology for locally stationary random fields. In Section 4 we construct the framework 71

for point prediction of locally stationary random fields using Model-Free inference. In 72

Section 5 we describe how cross validation be used to determine the optimal bandwidths 73

for both Model-Based and Model-Free inference. Finally in Section 6 using finite sample 74

experiments we compare the two novel approaches namely Model-Based of Section 3 and 75

Model-Free of Section 4 using synthetic and real life data. 76

2. Causality of Random Fields 77

Given the random field observations Yt1 , . . . , Ytn our goal is to perform predictive 78

inference for the "next" unknown datapoint Ytn+1 . In this context a definition of causality 79
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Figure 1. Non Symmetric Half-Plane

is necessary to specify the random field coordinate tn+1 where predictive inference will 80

be performed. For this purpose we adopt the framework proposed in [15] and consider 81

random fields discussed in this paper to be defined over a subset of the non symmetric 82

half-plane (NSHP) denoted as H∞. Figure 1 shows an NSHP centered at (0, 0). The NSHP 83

can also be centered at any other point t as follows: 84

NSHP(t) = t + s ∀s ∈ NSHP(0, 0) (3)

Such nonsymmetric half-planes have been used previously for specifying causal 2-D 85

AR models [15]. In such cases a causal 2-D AR model with Hp ⊂ H∞ can be defined as below 86

in equation (4) where the set Hp is termed as the region of support (ROS) of the 2-D AR 87

model. Here Hp = {(j, k) | j = 1, 2, . . . , p and k = 0,±1, . . . ,±p} ∪ {(0, k) | k = 1, 2, . . . , p} 88

and vt1,t2 is a 2-D white noise process with mean 0 and variance σ2 > 0. 89

Yt1,t2 = ∑
(j,k)∈Hp

β j,kYt1−j,t2−k + vt1,t2 (4)

Based on [23] a 2-D AR process with ROS S is causal if there exists a subset C of Z2
90

satisfying the following conditions: 91

• The set C consists of 2 rays emanating from the origin and the points lie between the 92

rays 93

• The angle between the 2 rays is strictly less than 180 degrees 94

• S ⊂ C 95

In this case since Hp ⊂ H∞ satisfies these conditions the 2-D AR process denoted by (4) 96

is causal. We use this framework to describe a causal random field defined over the NSHP 97

and perform predictive inference on the same. Given this our setup for point prediction of 98

random fields is described as below. 99

Consider random field data {Yt, t ∈ E} where E can be any finite subset of Z2 for e.g.
En = {t ∈ Z2 with n = (n1, n2)}. Our goal is predictive inference at t = (t1, t2) where
0 < t1 < n1 & 0 < t2 < n2,. This "future" value Yt1,t2 is determined using data defined over
the region as shown in Figure 2:

Et,n = NSHP(t) ∩ En

Both Model-Based and Model-Free causal inference for Yt1,t2 are performed using 100

the data specified over this region Et,n. We consider predictive inference at Yt = Yt1,t2 101

given the data (Ys | s ≺ t & s ∈ Et,n) where the symbol ≺ denotes lexicographical 102

ordering on the region of support of the random field i.e. (ak, bk) ≺ (ak+1, bk+1) if and 103
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Figure 2. Prediction point for NSHP. In this drawing NSHP(t) denotes the non symmetric half-plane
centered at t = (t1, t2) covering the hashed area. En denotes the finite subset of Z2 marked by the red
boundary. The intersection of the two gives Et,n. Point prediction is performed at t = (t1, t2).

only if either ak < ak+1 or (ak = ak+1 and bk < bk+1) [15]. In the subsequent discussion 104

the lexicographically ordered "past" data Ys will be denoted as Yt1 , Yt2 , . . . , Ytn and point 105

prediction will be performed at Yt = Ytn+1 . 106

3. Model-Based Point Prediction 107

We adopt the time changing mean and variance model as given by Equation (2). The 108

L2–optimal predictor of Ytn+1 given the data Ys = Ytn
= (Yt1 , . . . , Ytn)

′ is the conditional 109

expectation E(Ytn+1 |Ytn
). Using model (2) and assuming that Wtn

is weakly dependent it 110

can be shown that [9]: 111

E(Ytn+1 |Ytn
) = µ(tn+1) + σ(tn+1)E(Wtn+1 |Wtn

). (5)

From the above equation we can see that for Model-Based point prediction we need to 112

estimate the conditional expectation E(Wtn+1 |Wtn
) as well as the coordinate changing trend 113

and variance i.e. µ(tn+1) and σ(tn+1). 114

115

Estimating the conditional expectation: This is done by fitting a (causal) AR(p, q) model 116

to the data Wtn
= (Wt1 , . . . , Wtn ) with p, q chosen by minimizing AIC, BIC or a related 117

criterion as described in [15]. Using this framework involves estimating the coefficients of 118

the following 2-D AR model defined over a ROS Hp as described in Section 2: 119

Wr,s = ∑
(j,k)∈Hp

β j,kWr−j,s−k + vr,s (6)
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Here vr,s is a 2-D white noise process i.e., an uncorrelated sequence, with mean 0 and 120

variance σ2 > 0. For our point prediction problem setting this implies that 121

Ē(Wtn+1 |Wtn
) = ∑

(j,k)∈Hp

β j,kWtn1−j,tn2−k (7)

Estimating the trend and variance: This can be performed by using kernel smoothing [24– 122

26] using 2D kernels i.e. Nadaraya-Watson (NW) estimation. In addition since predicting 123

Ytn+1 is essentially a boundary problem it is also possible to use local linear fitting which 124

has been reported to have smaller bias than kernel smoothing for such estimation problems 125

[26–28]. For time series problems {Yt, t ∈ Z} local linear nonparametric estimation can 126

approximate the trend locally by a straight line whereas for the case of random fields 127

{Yt, t ∈ Z2} discussed in this paper local linear estimation can be used to approximate the 128

trend locally with a plane. 129

130

In order to estimate E(Wtn+1 |Wtn
) the stationary data Wt1 , . . . , Wtn needs to be esti- 131

mated. In this case Wt has to be calculated in a one-sided manner for all points including 132

those at the center of the dataset else the obtained values Ŵt1 , . . . , Ŵtn will not be stationary 133

which leads to incorrect estimation of the conditional expectation of Wtn+1 . The one-sided 134

kernel smoothed and local linear estimators used for calculating Ŵt1 , . . . , Ŵtn can be defined 135

in two ways as shown in the equations below on NW–Regular, NW–Predictive, LL–Regular 136

and LL–Predictive fitting. Here the bandwidth parameter b is assumed to satisfy 137

b→ ∞ as n→ ∞ but b/n→ 0 (8)

We will assume throughout that K(·) is a nonnegative, symmetric 2-D Gaussian kernel 138

function for which the diagonal values are set to the bandwidth b and the off-diagonal 139

terms are set to 0. Random field data is denoted as Yt1 , . . . , Ytk , . . . Ytn . 140

1. NW–Regular fitting: Let tk ∈ [t1, tn], and define 141

µ̂(tk) =
k

∑
i=1

Yti K̂
(

tk − ti
b

)
and

M̂(tk) =
k

∑
i=1

Y2
ti

K̂(
tk − ti

b
)

(9)

where 142

σ̂(tk) =
√

M̂tk − µ̂(tk)
2 and

K̂
(

tk − ti
b

)
=

K( tk−ti
b )

∑k
j=1 K(

tk−tj
b )

.
(10)

Using µ̂(tk) and σ̂(tk) we can now define the fitted residuals by 143

Ŵtk =
Ytk − µ̂(tk)

σ̂(tk)
for tk = t1, . . . , tn. (11)
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2. NW–Predictive fitting: 144

µ̃(tk) =
k−1

∑
i=1

Yti K̃
(

tk − ti
b

)
and

M̃(tk) =
k−1

∑
i=1

Y2
ti

K̃(
tk − ti

b
)

(12)

where 145

σ̃(tk) =
√

M̃tk − µ̃(tk)
2 and

K̃
(

tk − ti
b

)
=

K( tk−ti
b )

∑k−1
j=1 K(

tk−tj
b )

.
(13)

Using µ̃(tk) and σ̃(tk) we can now define the predictive residuals by 146

W̃tk =
Ytk − µ̃(tk)

σ̃(tk)
for tk = t1, . . . , tn. (14)

Similarly, the one-sided local linear (LL) fitting estimators of µ(tk) and σ(tk) can be defined 147

in two ways. 148

149

1. LL–Regular fitting: Let tk ∈ [t1, tn], and define 150

µ̂(tk) =
∑k

j=1 wjYtj

∑k
j=1 wj + n−2

and

M̂(tk) =
∑k

j=1 wjY2
tj

∑k
j=1 wj + n−2

(15)

Denoting 151

a = (a1, a2) = (tj − tk) (16)

st1,1 =
k

∑
j=1

K
( tj − tk

b

)
a1 (17)

st2,1 =
k

∑
j=1

K
( tj − tk

b

)
a2 (18)

st1,2 =
k

∑
j=1

K
( tj − tk

b

)
a2

1 (19)

st2,2 =
k

∑
j=1

K
( tj − tk

b

)
a2

2 (20)

st1,t2 =
k

∑
j=1

K
( tj − tk

b

)
a1a2 (21)
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wj = K(
tj − tk

b
){

st1,2st2,2 − s2
t1,t2

−a1(st1,1st2,2 − st2,1st1,t2)

+a2(st1,1st1,t2 − st1,2st2,1)

}
(22)

The term n−2 in eq. (15) is just to ensure the denominator is not zero; see [29]. Eq. (10) 152

then yields σ̂(tk), and eq. (11) yields Ŵtk . 153

154

2. LL–Predictive fitting: 155

µ̃(tk) =
∑k−1

j=1 wjYtj

∑k−1
j=1 wj + n−2

and

M̃(tk) =
∑k−1

j=1 wjY2
tj

∑k−1
j=1 wj + n−2

(23)

where 156

a = (a1, a2) = (tj − tk) (24)

st1,1 =
k−1

∑
j=1

K
( tj − tk

b

)
a1 (25)

st2,1 =
k−1

∑
j=1

K
( tj − tk

b

)
a2 (26)

st1,2 =
k−1

∑
j=1

K
( tj − tk

b

)
a2

1 (27)

st2,2 =
k−1

∑
j=1

K
( tj − tk

b

)
a2

2 (28)

st1,t2 =
k−1

∑
j=1

K
( tj − tk

b

)
a1a2 (29)

wj = K(
tj − tk

b
){

st1,2st2,2 − s2
t1,t2

−a1(st1,1st2,2 − st2,1st1,t2)

+a2(st1,1st1,t2 − st1,2st2,1)

}
(30)

Eq. (13) then yields σ̃(tk), and eq. (14) yields W̃tk . 157
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Using one of the above four methods (NW vs. LL, regular vs. predictive) gives estimates of 158

the quantities needed to compute the L2–optimal predictor (5). The bandwidth b in all 4 159

algorithms can be determined by cross-validation as described in Section 5. 160

4. Model-Free Point Prediction 161

For the Model-based case Equation (2) accounts for spatially-changing mean and 162

variance of Yt. More generally however it may happen that the random field {Yt for 163

t ∈ Z2} has a nonstationarity in its third (or higher moment), and/or in some other feature 164

of its mth marginal distribution. This is addressed by the Model-Free Prediction Principle 165

of Politis (2013, 2015). 166

The key towards Model-Free inference is to be able to construct an invertible trans- 167

formation Hn : Ytn
7→ εn where Ytn

= (Yt1 , Yt2 , . . . , Ytn) denotes the random field data 168

under consideration and εn = (ε1, . . . , εn)′ is a random vector with i.i.d. components. In 169

order to do this in our context, let some m ≥ 1, and denote by L(Ytk , Ytk−1 , . . . , Ytk−m+1) the 170

mth marginal of Ytk i.e. the joint probability law of the vector (Ytk , Ytk−1 , . . . , Ytk−m+1)
′. We 171

assume that L(Ytk , Ytk−1 , . . . , Ytk−m+1) changes smoothly (and slowly) with tk in order to use 172

nonparametric smoothing for estimation. In this case {Ytk , tk ∈ Z2} can be defined over a 173

2-D index-set D and the set (Ytk , Ytk−1 , . . . , Ytk−m+1) can be considered to be lexicographically 174

ordered as discussed previously in Section 2. 175

Similar to the framework proposed in [9] in order to ensure both the smoothness and 176

data-based consistent estimation of L(Ytk , Ytk−1 , . . . , Ytk−m+1) we assume that, for all tk, 177

Ytk = ftk (Wtk , Wtk−1 , . . . , Wtk−m+1) (31)

for some function ftk (w) that is smooth in both arguments tk and w, and some strictly 178

stationary and weakly dependent, univariate series Wtk where without loss of generality, it 179

is assumed that Wtk is a Gaussian series. Here model (2) is a special case of Eq. (31) with 180

m = 1, and the function ftk (w) being affine/linear in w. Therefore, for comparison with 181

the Model-Based case of Eq. (2), in this section we focus on the case m = 1. For reference 182

Model-Free estimators for point prediction and prediction intervals in the case of locally 183

stationary time series for m = 1 have been discussed in [9]. Below we describe the steps 184

necessary to construct the invertible transformation Hn required to perform Model-Free 185

point prediction for locally stationary random fields for the case m = 1. 186

187

Step 1: Transformation to uniform samples 188

189

With m = 1 let Dt(y) = P{Yt ≤ y} denote the first marginal distribution of the random 190

field {Yt}. Applying the probability integral transform we have 191

Ut = Dt(Yt) for t = t1, . . . , tn (32)

Here Ut1 , . . . , Utn are random variables having distribution Uniform (0, 1). In this case it is 192

assumed that Dt(y) is (absolutely) continuous in y for all t. Therefore we can use either 193

local constant or local linear fitting to estimate it. 194

195

Using local constant fitting a smooth estimator can be defined as: 196

D̄tk (y) =
T

∑
i=1

Λ(
y−Yti

h0
)K̃(

tk − ti
b

) (33)

where K̃( tk−ti
b ) = K( tk−ti

b )/ ∑T
j=1 K(

tk−tj
b ), Λ(y) is a smooth distribution function which 197

is strictly increasing with density λ(y) > 0 i.e. Λ(y) =
∫ y
−∞ λ(s)ds and h0 is a secondary 198

bandwidth. Furthermore, as in Section 3, we can let T = k or T = k− 1 leading to a fitted 199

vs. predictive way to estimate Dtk (y) using D̄tk (y). Similar to the Model-Based case we 200

will assume throughout that K(·) is a nonnegative, symmetric 2-D Gaussian kernel function 201
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for which the diagonal values are set to the bandwidth b and the off-diagonal terms are set 202

to 0. Note that the kernel estimator (33) is one-sided for the same reasons discussed before 203

in Section 3. Cross-validation is used to determine the bandwidths h0 and b ; details are 204

described in Section 5. 205

206

Since point prediction is performed on the boundary of the random field one can also 207

consider local linear estimation as an alternative to the local constant based smoothing 208

approach. D̄tk (y) as defined in eq. (33) is the Nadaraya-Watson smoother of the variables 209

v1, . . . , vn where vi = Λ(
y−Yti

h0
). It is possible to define D̄LL

tk
(y) which is the local linear 210

estimator of Dtk (y) based on the smoothed variables Λ(
y−Yti

h0
). This estimator is expected 211

to have smaller bias than D̄tk (y). However, there is no guarantee that this will be a proper 212

distribution function as a function of y, i.e., being nondecreasing in y with a left limit of 213

0 and a right limit of 1 as discussed in [26]. A proposed solution put forward by Hansen 214

[30] involves a straightforward adjustment to the local linear estimator of a conditional 215

distribution function that maintains its favorable asymptotic properties. The local linear 216

version of D̄tk (y) adjusted via Hansen’s (2004) proposal is given as follows: 217

D̄LLH
tk

(y) =
∑T

i=1 w�i Λ(
y−Yti

h0
)

∑T
i=1 w�i

. (34)

The weights w�i are derived from weights wi described in equations (22) and (30) for the
fitted and predictive cases where:

w�i =

{
0 when wi < 0
wi when wi ≥ 0

(35)

As with eq. (33), we can let T = k or T = k− 1 in the above, leading to a fitted vs. predictive 218

local linear estimators of Dtk (y) using D̄LLH
tk

(y). 219

220

One problem with the local linear estimator described above is that it replaces negative 221

weights by zeros, and then renormalizes the nonzero weights. However if estimation is 222

performed on the boundary (as in the case with one-step ahead prediction of random 223

fields), negative weights are crucially needed in order to ensure the extrapolation takes 224

place with minimal bias. To address this problem we modify the original, possibly non- 225

monotonic local linear distribution estimator D̄LL
tk
(y) to construct a monotonic version 226

denoted by D̄LLM
tk

(y). The Monotone Local Linear Distribution Estimator D̄LLM
tk

(y) can 227

be constructed by Algorithm 1 as given below[31]. 228

Algorithm 1. Monotone Local Linear Distribution Estimation 229

1. Recall that the derivative of D̄LL
tk
(y) with respect to y is given by

d̄LL
tk
(y) =

1
h0

∑T
j=1 wjλ(

y−Ytj
h0

)

∑n
j=1 wj

where λ(y) is the derivative of Λ(y) and the weights wj can be derived based on equations 230

(22) and (30) for the fitted and predictive cases. 231

2. Define a nonnegative version of d̄LL
tk
(y) as d̄LL+

tk
(y) = max(d̄LL

tk
(y), 0). 232

3. To make the above a proper density function, renormalize it to area one, i.e., let 233

d̄LLM
tk

(y) =
d̄LL+

tk
(y)∫ ∞

−∞ d̄LL+
tk

(s)ds
. (36)
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4. Finally, define D̄LLM
tk

(y) =
∫ y
−∞ d̄LLM

tk
(s)ds. 234

The above modification of the local linear estimator allows one to maintain monotonicity 235

while retaining the negative weights that are helpful in problems which involve estimation 236

at the boundary. As with eq. (33), we can let T = k or T = k− 1 in the above, leading to a 237

fitted vs. predictive local linear estimators of Dtk (y) that are monotone. 238

239

Step 2: Transformation to iid normal samples 240

241

Starting from the original random field data Yt1 , . . . , Ytn by using either the local constant, 242

the local linear or the monotone local linear distribution estimator in Step 1 it is possible to 243

obtain samples Ut1 , . . . , Utn having distribution Uniform (0, 1). However these samples are 244

dependent and therefore additional steps are necessary to convert them to i.i.d. samples as 245

required for Model-Free inference. This is done as described below. 246

247

Let Φ denote the cumulative distribution function (cdf) of the standard normal distribution. 248

Therefore we have: 249

Zt = Φ−1(Ut) for t = t1, . . . , tn; (37)

Here Zt1 , . . . , Ztn are correlated standard normal random variables. Now let Γn denote the 250

n× n covariance matrix of the random vector Ztn
= (Zt1 , . . . , Ztn)

′. Consider the Cholesky 251

decomposition Γn = CnC′n where Cn is (lower) triangular, and construct the whitening 252

transformation: 253

εn = C−1
n Ztn

. (38)

It then follows that the entries of εn = (ε1, . . . , εn)′ are uncorrelated standard normal. 254

Assuming that the random variables Zt1 , . . . , Ztn are jointly normal it can then be inferred 255

that ε1, . . . , εn are i.i.d. N(0, 1). Joint normality can be established by assuming a generative 256

model of the random field as given by Equation (31); for a more detailed discussion refer to 257

[9]. 258

259

To implement the whitening transformation (38), it is necessary to estimate Γn, i.e., the
n × n covariance matrix of the random vector Ztn

= (Zt1 , . . . , Ztn)
′ where the Zt are

the normal random variables defined in eq. (37). The problem involves positive defi-
nite estimation of Γn based on the sample Zt1 , . . . , Ztn . This estimate is based on the
sample autocovariance which is defined for a 2D second-order stationary random field
{yr,s|r = 1, 2, . . . , R, s = 1, 2, . . . , S} as follows [15]:

γ̆(j, k) = γ̆(−j,−k)

=
1

(R− j)(S− k)

R−j

∑
s=1

S−k

∑
t=1
{yr+j,s+k − ȳ}{yr,s − ȳ}

(39)

γ̆(j,−k) = γ̆(−j, k)

=
1

(R− j)(S− k)

R−j

∑
s=1

S

∑
t=k+1

{yr+j,s−k − ȳ}{yr,s − ȳ}
(40)

where (j, k = 0, 1, 2, . . .) 260

261

Now let Γ̂AR
n be the n× n covariance matrix associated with the fitted AR(p,q) model to 262

the data Zt1 , . . . , Ztn with p, q by minimizing AIC, BIC or a related criterion as described in 263

[15]. Let γ̂AR
|i−j| denote the i, j element of the Toeplitz matrix Γ̂AR

n . Using the 2D Yule-Walker 264

equations to fit the AR model implies that γ̂AR
k,l = γ̆k,l for k = 0, 1, . . . , p and l = 0, 1, . . . , q. 265
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For the cases where k > p or l > q, γ̂AR
k,l can be fitted by iterating the difference equation 266

that characterizes the fitted 2D AR model. In the R software this procedure is automated for 267

time series using the ARMAacf() function, here we extend the same approach for stationary 268

data over random fields. 269

270

Estimating the ‘uniformizing’ transformation Dt(·) and the whitening transformation 271

based on Γn allows us to construct the transformation Hn : Ytn
7→ εn. Here εn is a random 272

vector with i.i.d. components as required by the Model-Free prediction principle. Since 273

all the steps in the transformation, i.e., eqs. (32), (37) and (38), are invertible; therefore, 274

the composite transformation Hn : Ytn
7→ εn is also invertible. However, in order to put 275

the Model-Free Prediction Principle to work, we also need to estimate the transformation 276

Hn+1 (and its inverse). To do so, we need a positive definite estimator for the matrix Γn+1; 277

this can be accomplished by extending the covariance matrix associated with the fitted 2D 278

AR(p,q) model to (n + 1) by (n + 1) i.e. calculate Γ̂AR
n+1. 279

280

Consider the following vectors which include the additional values Ytn+1 , Ztn+1 and εn+1 281

that have not yet been estimated: 282

• Ytn+1
= (Yt1 , . . . , Ytn , Ytn+1)

′, 283

• Ztn+1
= (Zt1 , . . . , Ztn , Ztn+1)

′ and 284

• εn+1 = (ε1, . . . , εn, εn+1)
′

285

We now show how to obtain the inverse transformation H−1
n+1 : εn+1 7→ Ytn+1

. Since εn and 286

Ytn
are related in a one-to-one way via transformation Hn, therefore the values Yt1 , . . . , Ytn 287

are obtainable by Ytn
= H−1

n (εn). Similar to the framework proposed for locally stationary 288

time series in [9] below we show how to create the unobserved Ytn+1 from εn+1 using the 289

following three steps. 290

291

Algorithm 2. GENERATION OF UNOBSERVED DATAPOINT FROM FUTURE INNOVA- 292

TIONS 293

i. Let 294

Ztn+1
= Cn+1εn+1 (41)

where Cn+1 is the (lower) triangular Cholesky factor of (our positive definite estimate of) Γn+1. 295

From the above, it follows that 296

Ztn+1 = cn+1εn+1 (42)

where cn+1 = (c1, . . . , cn, cn+1) is a row vector consisting of the last row of matrix Cn+1. 297

ii. Create the uniform random variable 298

Utn+1 = Φ(Ztn+1). (43)

iii. Finally, define 299

Ytn+1 = D−1
tn+1

(Utn+1); (44)

where in practice, the above will be based on an estimate of D−1
tn+1

(·). 300

Since Ytn
has already been created using (the first n coordinates of) εn+1, the above com-

pletes the construction of Ytn+1
based on εn+1, i.e., the mapping H−1

n+1 : εn+1 7→ Ytn+1
. By

combining eq. (42), (43) and (44) we can write the formula:

Ytn+1 = D−1
tn+1

(Φ( cn+1εn+1)).



Version July 19, 2023 submitted to Appl. Sci. 12 of 18

The term cn+1εn+1 can be written as ∑n
i=1 ciεi + cn+1εn+1; hence, the above can be compactly 301

denoted as 302

Ytn+1 = gn+1(εn+1) where

gn+1(x) = D−1
tn+1

(
Φ

(
n

∑
i=1

ciεi + cn+1x

))
.

(45)

Eq. (45) is the predictive equation required in the Model-free Prediction Principle where 303

Ytn+1 is estimated conditionally on Ytn
= (Yt1 , Yt2 , . . . , Ytn). The complete algorithm for 304

constructing the Model-Free point predictors is as described below: 305

Algorithm 3. MODEL-FREE (MF) POINT PREDICTORS FOR Ytn+1 306

1. Construct Ut1 , . . . , Utn by eq. (32) with Dtk (·) estimated by either D̄tk (·) , D̄LLH
tk

(·) or 307

D̄LLM
tk

(·) where tk ∈ [t1, tn] 308

2. Construct Zt1 , . . . , Ztn by eq. (37) 309

3. Construct ε1, . . . , εn by eq. (38), and let F̂n denote their empirical distribution. 310

4. The Model-free L2–optimal point predictor of Ytn+1 is then

Ŷtn+1 =
∫

gn+1(x)dFn(x) =
1
n

n

∑
i=1

gn+1(εi)

311

where the function gn+1 is defined in the predictive equation (45) with Dtn+1(·) being again 312

estimated by either D̄tn+1(·) , D̄LLH
tn+1

(·) or D̄LLM
tn+1

(·) 313

5. The Model-free L1–optimal point predictor of Ytn+1 is given by the median of the set {gn+1(εi) 314

for i = 1, . . . , n}. 315

5. Random Fields cross-validation 316

To choose the bandwidth b for either Model-Based or Model-Free point prediction, 317

we perform one-step-ahead prediction at several coordinates of the given random field 318

data. To elaborate, consider a random field Yt1 , Yt2 , . . . , Ytn and suppose only subseries 319

Yt1 , Yt2 , . . . , Ytk has been observed where k < n. Let Ŷtk+1 denote the predicted value based 320

on the data Yt1 , . . . , Ytk ; this can be estimated by using either the Model-Based or Model- 321

Free approaches as described in Sections 3 and 4 for some choice of b. However, since 322

Ytk+1 is known, the quality of the predictor can be assessed. So, for each value of b over a 323

reasonable range, we calculate the sum of squared errors: 324

SSE(b) =
n−1

∑
k=ko

(Ŷtk+1 −Ytk+1)
2 (46)

here ko should be big enough so that estimation is accurate, e.g., ko can be of the order of 325√
n. The cross-validated bandwidth choice would then be the b that minimizes SSE(b). 326

For the problem of selecting h0 in the case of Model-Free point predictors, as in [21], our 327

final choice is h0 = h2 where h = b/n. Note that an initial choice of h0 (needed to perform 328

cross-validation to determine the optimal bandwidth b) can be set by any plug-in rule as 329

the effect of choosing an initial value of h0 is minimal. 330

6. Model-Free vs. Model-Based Inference: empirical comparisons 331

The point prediction performance of the Model-Free and Model-Based predictors 332

described above are empirically compared using simulated as well as real-life data. The 333

Model-Based local constant and local linear methods are denoted as MB-LC and MB-LL 334

respectively. Model-Based predictors MB-LC and MB-LL are described in Section 3. The 335

Model-Free methods using local constant, local linear (Hansen) and local linear (Monotone) 336

are denoted as MF-LC, MF-LLH, MF-LLM. Model-Free predictors are described in Section 337
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4. Both fitted and predictive residuals as described in Sections 3 and 4 are used for point 338

prediction and their performance as indicated by Mean Squared Error (MSE) is used to 339

compare the various estimators. 340

341

Baseline comparisons: Besides the above MB and MF estimators we also provide three 342

baselines estimators for comparison as described below: 343

• Model-Based estimation of Ytn+1 involves nonparametric mean and variance estimation 344

followed by estimating the conditional expectation E(Wtn+1 |Wtn
) which involves 345

calculating the coefficients of the 2-D AR model as given by Equation 6. In this case as 346

a baseline we have included results for both the synthetic and real-life datasets using 347

only local linear estimation of the mean i.e. in this case the L2–optimal predictor of 348

Ytn+1 is given by: 349

Ŷtn+1 = µ(tn+1) (47)

Here µ(tn+1) is calculated using local linear fitting based on Equations 23–30 (in this 350

case regular and predictive fitting are the same as stated in Remark 2.2 in [9]). In Tables 351

1 and 2 this estimator is shown as LL . 352

353

• Model-Free estimation of Ytn+1 involves nonparametric estimation of the first marginal 354

distribution followed by estimating the autocovariance matrix Γ̂AR
n . In this case as a 355

baseline we have included results using only local linear estimation of the uniformizing 356

transformation as given by Equations 34–35 (Local Linear Hansen) and Algorithm 357

1 (Monotone Local Linear Distribution Estimation). For the same reasons as stated 358

above regular and predictive fitting are also the same in this case. The L2–optimal 359

predictor of Ytn+1 in this case is given by: 360

Ŷtn+1 =
1
M

M

∑
i=1

D−1
tn+1

(ui) (48)

Here u1, . . . , uM ∼ U[0, 1] where M is some large integer, U is the uniform distribution 361

and Dtn+1 is estimated by using D̄LLH
tn+1

(·) or D̄LLM
tn+1

(·). In Tables 1 and 2 these estimators 362

are shown as LLH, LLM. 363

The code for all algorithms used for the synthetic and real-life datasets as discussed in this 364

paper can be found under https://github.com/srinjoyd/randomfields_pp. 365

6.1. Simulation: Additive model with stationary 2-D AR errors 366

Let a random field be generated using the 2-D AR process as below:

Wt = Wt1,t2 = 0.25Wt1−1,t2−1 + 0.2Wt1−1,t2+1

− 0.05Wt1−2,t2 + vt1,t2

(49)

Let this field be generated over the region defined by 0 ≤ t1 ≤ n1 & 0 ≤ t2 ≤ n2 where 367

n1 = 101, n2 = 101. The NSHP limits are set from (101, 101) to (50, 50), this defines the 368

region Et,n as shown in Figure 2. The data Yt is generated using the additive model in eq. (1) 369

with trend specified as µ(t) = µ(t1, t2) = sin(4π t2−1
n2−1 ) where 0 ≤ t1 ≤ n1 & 0 ≤ t2 ≤ n2. 370

Here vt1,t2 are i.i.d. N(0, τ2) where τ = 0.1. Let t1 = 50, t2 = 50 where point prediction 371

is performed. Bandwidths for all Model-Based, Model-Free and baseline predictors are 372

calculated using cross-validation as described in Section 5. 373

Results for point prediction using mean square error (MSE) over all MB and MF 374

methods are shown in Table 1. A total of 100 realizations of the dataset were used for 375

measuring point prediction performance. From this table it can be seen that MB-LL is the 376

best point predictor. This is expected since the data was generated by a 2D AR model 377

https://github.com/srinjoyd/randomfields_pp
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Figure 3. Linear trend for NSHP where prediction is performed (50, 50). Here the axes labeled x and
y denote the coordinates of the random field and the axis labeled z denotes the corresponding value
of the random field at those coordinates.

which is the same used in MB-LL prediction. In addition the estimation is performed at 378

the boundary of the random field with a strong linear trend as shown in Figure 3 where 379

LL regression is expected to perform the best. In addition it can be observed that MF-LLM 380

performs the best among all MF point predictors and approaches the performance of MB-LL. 381

This shows that monotonicity correction in the LLM distribution estimator has minimal 382

effect on the center of the distribution that is used for point prediction. 383

In addition comparing the performance of MB-LL versus its corresponding baseline 384

LL and that of MF-LLH and MF-LLM versus their corresponding baselines LLH and 385

LLM respectively, show that the baseline estimators underperform as they do not take into 386

account the spatial dependence present in the data either by estimating the coefficients of the 387

2D AR model (Equation 6 as in the Model-Based case) or by estimating the autocovariance 388

matrix Γ̂AR
n (Model-Free case). 389

Table 1. Point Prediction performance for 2-D AR dataset

Prediction Method Residual Type MSE
MB-LC P 1.488e-02

F 1.520e-02
MB-LL P 1.393e-02

F 1.400e-02
MF-LC P 1.530e-02

F 1.549e-02
MF-LLH P 1.471e-02

F 1.515e-02
MF-LLM P 1.414e-02

F 1.456e-02
LL Not Applicable 1.488e-02

LLH Not Applicable 1.651e-02
LLM Not Applicable 1.455e-02
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6.2. Real-life example: CIFAR images 390

The CIFAR-10 dataset [32] is used as a real-life example to compare the Model-Based 391

and Model-Free prediction algorithms discussed before. The original CIFAR-10 dataset 392

consists of 60000 32 by 32 color images in 10 classes, with 6000 images per class. We 393

pick 100 images from the class "dog" where the original images have 3 RGB (red, green, 394

blue) channels with discrete pixel values. We pick the R (red) channel of each image, and 395

standardize these to generate a new real-valued dataset. Our final transformed dataset has 396

100 32 by 32 random fields. The NSHP limits are set from (32, 32) to (16, 16), this defines 397

the region Et,n as shown in Figure 2. Rest of the image is considered as occluded and their 398

pixel values are not available for prediction. Sample images used for prediction are shown 399

in Figure 4. Let t1 = 16, t2 = 16 where point prediction is performed. Bandwidths for all 400

Model-Based, Model-Free and baseline predictors are calculated using cross-validation as 401

described in Section 5. 402

Results for point prediction using mean square error (MSE) over all MB and MF 403

methods are shown in Table 2. From this table it can be seen that MF-LLH and MF-LLM 404

are the best point predictors. The superior performance of the Model-Free estimators as 405

compared to their Model-Free counterparts can be attributed to the fact that the CIFAR-10 406

image data is not compatible with additive model as given by eq. (1). It can also be seen 407

that unlike the synthetic 2D AR dataset the two best predictors MF-LLH and MF-LLM are 408

closer in performance which is owing to lack of a linear trend at the point where prediction 409

is performed. 410

In addition comparing the performance of MB-LL versus its corresponding baseline 411

LL and that of MF-LLH and MF-LLM versus their corresponding baselines LLH and 412

LLM respectively, show that the baseline estimators underperform as they do not take into 413

account the spatial dependence present in the data either by estimating the coefficients of the 414

2D AR model (Equation 6 as in the Model-Based case) or by estimating the autocovariance 415

matrix Γ̂AR
n (Model-Free case). 416

Figure 4. Sample images from CIFAR-10 dataset with label dog (Note: Here full images are shown
although only part of it is used for prediction.)
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Table 2. Point Prediction performance for CIFAR-10 dataset

Prediction Method Residual Type MSE
MB-LC P 1.98e-01

F 2.20e-01
MB-LL P 1.79e-01

F 1.95e-01
MF-LC P 1.79e-01

F 2.12e-01
MF-LLH P 1.60e-01

F 1.89e-01
MF-LLM P 1.64e-01

F 1.70e-01
LL Not Applicable 2.12e-01

LLH Not Applicable 2.38e-01
LLM Not Applicable 2.14e-01

7. Conclusions and Future Work 417

In this paper we investigate the problem of one-sided prediction over random fields 418

that are stationary only across a limited part over their entire region of definition. For such 419

locally stationary random fields we develop frameworks for point prediction using both a 420

Model-Based approach which includes a coordinate changing trend and/or variance and 421

also by using the Model-Free principle proposed by [21], [22]. We apply our algorithms to 422

both synthetic data as well as a real-life dataset consisting of images from the CIFAR-10 423

dataset. In the latter case we obtain the best performance by using the Model-Free ap- 424

proach and thereby demonstrate the superiority of this technique versus the Model-Based 425

case where an additive model is assumed arbitrarily for purposes of prediction. In future 426

work we plan to investigate both Model-Based and Model-Free prediction using random 427

fields with non-uniform spacing of data as well as consider extending our algorithms for 428

estimating prediction intervals. 429
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