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The supplement contains three parts. One set of sufficient conditions for geometric ergodicity of

Xt = ϕ(Xt−1) + σ(Xt−1)ϵt (1)

are discussed in Appendix A. The application of the forward bootstrap prediction algorithm on the
general NLAR model

Xt = G(Xt−1, ϵt)

is presented in Appendix B. The proofs for the lemmas and theorems in the main text are given in
Appendix C.

Appendix A Sufficient conditions for geometric ergodicity

Checking geometric ergodicity for a LAR model is simple; it is well known that the LAR model is
stationary and geometrically ergodic as long as the corresponding characteristic polynomial does not
have zero roots inside or on the unit circle. However, this check criterion depends on the linearity
assumption, and can not be extended to serve for NLAR model directly An and Huang (1996). Thus,
practitioners rely on Markov chain techniques to explore conditions under which the NLAR model is
geometrically ergodic. The motivation is that the NLAR model can be described as a Markov chain
in a general state space; the extensive discussions and literature related to Markov chains can guide
the development of criteria to check the ergodicity of NLAR models.

One of the earliest criteria developed to guarantee the ergodicity of a Markov chain is Doeblin’s
condition given by Doob (1953). Later, Tweedie (1975) proposed a more generalized condition, the so-
called Drift criterion. This criterion gives a sufficient condition for an aperiodic and irreducible Markov
chain to be geometrically ergodic. For completeness, we present this criterion using the version applied
by An and Huang (1996):
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Lemma A.1 (Drift criterion). Let {Xt} be an aperiodic and irreducible Markov chain. Suppose that
there exists a small set C, a non-negative measurable function k, positive constants c1, c2 and ρ < 1

such that:

E(k(Xt+1)|Xt = x) ≤ ρk(x)− c1, for any x /∈ C,

E(k(Xt+1)|Xt = x) ≤ c2, for any x ∈ C.
(2)

Remark. The function k(·) is called the test function in the literature. For the formal definition of a
‘small set’; see Tjøstheim (1990) or Tong (1990). We will soon see that the small set can be taken as
a compact set in some situations.

Thus, to ensure the ergodicity of an NLAR model, people can check if {Xt} is aperiodic and
irreducible and Lemma A.1 holds. Along with this idea, An and Huang (1996) give several kinds of
sufficient conditions for Eq. (1) with σ(Xt−1) ≡ 1 (homoscedastic errors case) to be geometrically
ergodic. Note that the test function k(·) and the specific small set will change according to which
condition is based. Then, Min and Hongzhi (1999) extend these results to the region of NLAR models
with heteroscedastic errors. Based on this body of work, if we assume:

A4 The probability density function of innovation fϵ(·) is continuous and everywhere positive.

A5 The conditional mean and volatility functions satisfy the inequalities:

sup
||x||2≤K

|ϕ(x)| < ∞ ; sup
||x||2≤K

|σ(x)| < ∞, for each K > 0, (3)

where x ∈ Rp, and || · ||2 is the Euclidean norm.

we can obtain a useful Lemma:

Lemma A.2. Let {Xt} satisfy the model Eq. (1). Suppose A4 and A5 are fulfilled. Then {Xt} is
aperiodic and irreducible with respect to µ which is the Lebesgue measure. Moreover, the µ-non-null
compact sets are small sets.

Remark A.1. The proof of Lemma A.2 can be found in Min and Hongzhi (1999). The original proof
only requires the density function to be lower semi-continuous. In this paper, since the estimation of the
innovation distribution and the L1 optimal predictor will be discussed, we require a stronger condition
for the density function. Besides, we should notice that we can check the classical properties defined
by the Markov chain to verify the aperiodicity and irreducibility. Nevertheless, it is more natural
to apply Lemma A.2 for analyzing NLAR models. For example, when we consider a homoscedastic
NLAR model with p = 1, the drift criterion and the boundedness of the conditional mean function on
a suitable compact set can be satisfied by a simple condition: |ϕ(x)| ≤ C2|x| + C1, for all x and some
C1 < ∞, C2 < 1; this is exactly Assumption 3 (i) of Franke, Kreiss, et al. (2002). In their work,
they mentioned that the everywhere-positive assumption (A4) on the density function is unnecessarily
restrictive. Thus, they replace it with their Assumption 3 (iii). However, for simplifying the proofs of
our paper, we still require the everywhere-positive property. Furthermore, we will apply a convolutional
technique to acquire an everywhere-positive “innovation distribution” in the bootstrap world to satisfy
this strong assumption.
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The condition which ensures the Drift criterion is satisfied for a homoscedastic NLAR models can
be drawn from An and Huang (1996). If we assume:

A6 There exists a positive number λ < 1 and a constant C such that the conditional mean function
satisfies:

|ϕ(x)| ≤ λmax{|x1|, . . . , |xp|}+ C, (4)

then we can get the below lemma:

Lemma A.3 (Theorem 3.2 of An and Huang (1996)). Let {Xt} satisfy the homoscedastic version of
the model Eq. (1). If A4 and A6 are fulfilled, then this NLAR model is geometrically ergodic.

Similarly, we can obtain the condition for heteroscedastic NLAR models to be geometrically ergodic
by imposing an additional assumption on the variance function:

A7 The conditional variance function satisfies:

lim
||x||2→∞

σ(x)

||x||2
= 0. (5)

Then the Lemma holds:

Lemma A.4 (Theorem 3.5 of Min and Hongzhi (1999)). Let {Xt} satisfy the model Eq. (1). Suppose
the conditional variance function satisfies A5 and A7. In addition, A6 holds true for the conditional
mean function, and A4 holds true for the probability density function. Then, this heteroscedastic NLAR
model is geometrically ergodic.

Appendix B Forward bootstrap prediction of general NLAR

models

Similar to the setup in the main context, we suppose that we observe T + p number of real-valued
samples {X−p+1, X−p+2, . . . , XT }, but these samples were generated from the below general ergodic
NLAR model:

Xt = G(Xt−1, ϵt); (6)

here {ϵt} is still assumed to be i.i.d. with mean zero, and Xt−1 represents vector {Xt−1, . . . , Xt−p};
G(·, ·) can be any continuous (possibly non-linear) function that makes the variance and mean of {Xt}
finite. The problem is how can we make multi-step ahead prediction inferences with such a complicated
model. As different from the location-scale model in the main context, it may be hard to estimate Fϵ

by residuals explicitly in practice. Thus, we present forward bootstrap algorithms for two ideal cases:
(a) G(·, ·) and Fϵ are known; (b) G(·, ·) and Fϵ are unknown, but they can be estimated consistently.

B.1 Simulation-based prediction

First, consider an idealized situation where the model G(Xt−1, ϵt) and the distribution of innovations
Fϵ are known. In this case, we propose to approximate the h-step ahead prediction by simulating
innovations from Fϵ and plugging them into the NLAR model. To describe the idea, focus on the
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2-step ahead prediction, and note that the distribution of the future value XT+2 (conditional on the
observed XT ) is identical to the distribution of

G(G(XT , ϵ
∗
T+1), ϵ

∗
T+2),

where ϵ∗T+1 and ϵ∗T+2 are i.i.d.∼ Fϵ. Going to the h-step ahead prediction, the distribution of the
future value XT+h (conditional on the observed XT ) is identical to the distribution of the quantity

G(· · ·G(G(G(XT , ϵ
∗
T+1), ϵ

∗
T+2), ϵ

∗
T+3), . . . , ϵ

∗
T+h), (7)

where ϵ∗T+1, . . . , ϵ
∗
T+h are i.i.d.∼ Fϵ.

Of course, in order to obtain the L2 or L1 optimal point predictor, we would need to approximate
the mean or median of the quantity (7). We can do this by Monte Carlo (MC) simulation; the
simulation will be based on M replicates of the quantity (7); these are denoted {X(m)

T+h}
M
m=1. Then,

the L2 or L1 optimal predictor of XT+h can be approximated by the mean or median, respectively,
of {X(1)

T+h, . . . , X
(M)
T+h}; the empirical distribution of the values {X(1)

T+h, . . . , X
(M)
T+h} can also be used to

approximate the distribution of the future value XT+h (conditional on the observed XT ), leading to
the construction of asymptotically valid PIs as M → ∞.

B.2 Bootstrap-based prediction

In the more realistic scenario, both G(·, ·) and Fϵ are unknown but we assume that they can be
estimated from the data at hand; denote their estimators by Ĝ(·, ·) and the empirical distribution of
residuals by F̂ϵ, respectively, and assume they are consistent. Conducting a simulation as described
in the previous subsection using Ĝ(·, ·) and F̂ϵ in place of the unknown G(·, ·) and Fϵ turns the MC
simulation into a bootstrap procedure. The bootstrap version of the quantity (7) is now given by

Ĝ(· · · Ĝ(Ĝ(Ĝ(XT , ϵ̂
∗
T+1), ϵ̂

∗
T+2), ϵ̂

∗
T+3), . . . , ϵ̂

∗
T+h), (8)

where {ϵ̂∗t }T+h
t=T+1 are i.i.d.∼ F̂ϵ; Ĝ(·, ·) is an estimator to the true model. Next, we can take a similar

approach as the simulation-based method previously described to approximate the L1 or L2 optimal
predictor of XT+h. Also, the asymptotically valid PI can be determined as T → ∞ and M → ∞.
However, such a QPI will suffer from finite-sample undercoverage since the variability of estimating the
model is not taken into account. We will prefer constructing a PPI instead that possesses a stronger
property than the asymptotic validity. The setup of PPI for general NLAR models is similar to the
procedure explained by Algorithm 2 in the main text.

Appendix C Proofs

Proof of Theorem 2.1. Denote the exactly L2 optimal predictor of XT+h by XL2
T+h. We know

it is a conditional mean given observed data:

XL2
T+h = E(XT+h|XT , . . . , XT−p+1). (9)

Due to the strong stationary property, we can rewrite Eq.(10) in the main text as XT+h = f(Y , ϵh),
where Y and ϵh represent {Xt}pt=1 and {ϵt}T+h

t=T+1, respectively. Moreover, by the causality assumption,
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we get Y and ϵh are independent. In addition, {ϵ(i)h }Mi=1 are also i.i.d.. Thus, {X(i)
T+h}

M
i=1 are condi-

tionally i.i.d. given Y . Based on Theorem 4.2 of Majerek, Nowak, and Zieba (2005), the conditional
version of the strong law of large numbers implies that:

X̂L2
T+h =

1

M

M∑
i=1

X
(i)
T+h

a.s.→ XL2
T+h, assuming that XL2

T+h exits. (10)

The existence of XL2
T+h is guaranteed by assumptions A2 and A5 - A7. This proof can be directly

extended to the NLAR model with heteroscedastic errors, since the relationship XT+h = f(Y , ϵh) is
also satisfied, so {X(i)

T+h}
M
i=1 are still conditionally i.i.d. given Y . Therefore, without changing other

parts of this proof, we can show the analogous theorem for NLAR models with heteroscedastic error
cases.

Proof of Theorem 2.2. We actually want to show that under the ergodic property:

X̂L1
T+h

p→ XL1
T+h, as M converges to infinity. (11)

We can write X̂L1
T+h and XL1

T+h as:

X̂L1
T+h = HM (Y ,E h) = Median(f(Y , ϵ

(1)
h ), . . . , f(Y , ϵ

(M)
h )) ; XL1

T+h = H(Y , ϵh) = QXT+h|XT
(1/2),

(12)
where Y and ϵh represent {Xt}pt=1 and {ϵt}T+h

t=T+1, respectively; E h represents the whole set {ϵ(i)h }Mi=1.
QXT+h|XT

is the conditional quantile function of XT+h. By assumption A8, f(·, ·) is also uniformly
continuous in x since it is a composition of uniformly continuous functions. Thus, for a given η > 0,
there exists a constant δ > 0 such that:

|f(y1, ϵh)− f(y2, ϵh)| < η, when ||y1 − y2|| ≤ δ, (13)

where || · || is any norm equivalent to the Euclidean norm.
Then, we can split the p-dimensional ball B(D) = {y, ||y|| ≤ D} into some disjoint subsets Sj , j =

1, . . . , k. Let ||y − sj || < δ for sj ∈ Sj and any point y ∈ B(D) such that:

|f(y, ϵh)− f(si, ϵh)| < η,∀η > 0. (14)

Thus, |f(y, ϵ(i)h ) − f(sj , ϵ
(i)
h )| < η, ∀i ∈ 1, . . . ,M . It is possible to fix a small enough η to make sure

that the order of {f(y, ϵ(1)h ), . . . , f(y, ϵ
(M)
h )} is same with the order of {f(sj , ϵ

(1)
h ), . . . , f(sj , ϵ

(M)
h )}. In

other words, we have:
k∑

j=1

Ij |HM (Y ,E h)−HM (sj ,E h)| < η, (15)

where Ij represents the indicator function I(Y ∈ Sj), j = 1, . . . , k. In addition, we also have:

k∑
j=1

Ij |H(Y , ϵh)−H(sj , ϵh)| < η. (16)
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Therefore, define I0 := I(Y /∈ B(D)), by combining Eqs. (15) and (16), we can get:

|HM (Y ,E h)−H(Y , ϵh)|

=
k∑

j=1

Ij |HM (Y ,E h)−HM (sj ,E h) +HM (sj ,E h)−H(sj , ϵh) +H(sj , ϵh)−H(Y , ϵh)|+

I0|HM (Y ,E h)−HM (s0,E h) +HM (s0,E h)−H(s0, ϵh) +H(s0, ϵh)−H(Y , ϵh)|

≤
k∑

j=1

Ij (|HM (Y ,E h)−HM (sj ,E h)|+ |HM (sj ,E h)−H(sj , ϵh)|+ |H(sj , ϵh)−H(Y , ϵh)|) + I0 · C

≤ 2η + I0 · C +
k∑

j=1

Ij |HM (sj ,E h)−H(sj , ϵh)|.

(17)

Comparing HM (sj ,E h) and H(sj , ϵh), where sj is a fixed point, by applying the CLT on the sample
median for the ergodic series, we can get HM (sj ,E h) converges to H(sj , ϵh) in probability. The
non-zero property of the probability density of Xn+h at the median is guaranteed by the everywhere
positive density function of innovation. Thus, we have:

P(|HM (Y ,E h)−H(Y , ϵh)| ≤ 2η + I0 · C) → 1. (18)

Besides, D can be arbitrarily large. Also, η can be arbitrarily small. Finally, we get:

P(|HM (Y ,E h)−H(Y , ϵh)| ≤ ε) → 1. (19)

The above proof can be extended to other quantile estimators. Thus, we can build asymptotically
valid QPI with any CVR. For extending such proof to NLAR models with heteroscedastic errors, we
need the variance function is also uniformly continuous. Then, f(·, ·) is still uniformly continuous in x.
Therefore, without changing other parts of this proof, we can show the analogous theorem for NLAR
models with heteroscedastic error cases.

Proof of Lemma 2.1. To simplify the notation, we just consider the NLAR model in Eq.(11) of
the main text with order 1 and homoscedastic errors. The case with higher order and heteroscedastic
errors can be proved similarly.

The proof is inspired by the work of Boldin (1983). For connecting Fϵ(x) and F̂ϵ(x), we should
notice that the empirical distribution FT (x) based on {ϵi}Ti=1 can be a bridge, i.e., we have:

sup
x

|F̂ϵ(x)− Fϵ(x)| = sup
x

|F̂ϵ(x)− FT (x) + FT (x)− Fϵ(x)|

≤ sup
x

|F̂ϵ(x)− FT (x)|+ sup
x

|FT (x)− Fϵ(x)|.
(20)

From the Glivenko–Cantelli theorem, we know supx |FT (x)−Fϵ(x)| converges to 0 a.s.. Thus, we only
need to show:

sup
x

|F̂ϵ(x)− FT (x)|
p→ 0. (21)

First, we know

if ∆i(x) =

1, ϵi ≤ x

0, ϵi > x
then, FT (x) =

1

T

T∑
i=1

∆i(x). (22)
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Thus, we can get:

F̂ϵ(x) =
1

T

T∑
i=1

∆i(x+ ϕ(Xi−1, θ̂1)− ϕ(Xi−1, θ1)), (23)

since ϵ̂i = ϕ(Xi−1, θ1) − ϕ(Xi−1, θ̂1) + ϵi. For handling the randomness of ϕ(Xi−1, θ̂1) − ϕ(Xi−1, θ1)

inside ∆i(·) of Eq. (23), we use nonrandom ηT , T = 1, 2, 3, . . . , to replace ϕ(Xi−1, θ̂1) − ϕ(Xi−1, θ1).
Then, we can consider the process:

zT (x, ηT ) = F̂ϵ(x)− FT (x) =
1

T

T∑
i=1

(∆i(x+ ηT )−∆i(x)) . (24)

Indeed, we have:

P(sup
x

|F̂ϵ(x)− FT (x)| > ϵ) ≤ P(sup
x

sup
|ηT |≤T−λ

|zT (x, ηT )| > ϵ) + P(|ϕ(Xi−1, θ̂1)− ϕ(Xi−1, θ1)| > T−λ).

(25)
Without loss of generality, we select an appropriate λ to make sure the second term on the right-hand
side of the above inequality converges to 0 under A9 and A10.

Then, we shall show P(supx sup|ηT |≤T−λ |zT (x, ηT )| > ϵ) also converges to 0. Since this term depends
on the continuum of values of x, we can partition the real axis into NT ∼ T 1/2 parts by points:

−∞ = x0 < x1 < · · ·xk < · · · < xNT−1 < xNT
= ∞, where Fϵ(xk) = kN−1

T . (26)

Hence, for xr and xr+1 such that xr ≤ x ≤ xr+1, we have:

xr + ηT ≤ x+ ηT ≤ xr+1 + ηT . (27)

In addition, since ∆i(x) is monotonic, we obtain:

zT (x, ηT ) ≥ zT (xr, ηT ) +
1

T

T∑
i=1

∆i(xr)−
1

T

T∑
i=1

∆i(xr+1);

zT (x, ηT ) ≤ zT (xr+1, ηT ) +
1

T

T∑
i=1

∆i(xr+1)−
1

T

T∑
i=1

∆i(xr).

(28)

Therefore, we have:

sup
x

sup
|ηT |≤T−λ

|zT (x, ηT )|

≤ sup
k≤NT−1

sup
|ηT |≤T−λ

|zT (xk+1, ηT )|

+ sup
k≤NT

sup
|ηT |≤T−λ

|zT (xk, ηT )|

+ sup
|t1−t2|≤N−1

T

1

T

∣∣∣∣∣
T∑
i=1

(
∆i(F

−1
ϵ (t1))−∆i(F

−1
ϵ (t2))

)∣∣∣∣∣ .
(29)
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For the last term on the r.h.s. of Eq. (29):

sup
|t1−t2|≤N−1

T

1

T

∣∣∣∣∣
T∑
i=1

(
∆i(F

−1
ϵ (t1))−∆i(F

−1
ϵ (t2))

)∣∣∣∣∣
= sup

|t1−t2|≤N−1
T

1

T

∣∣∣∣∣
T∑
i=1

(
∆i(F

−1
ϵ (t1))− t1 + t1 − t2 + t2 −∆i(F

−1
ϵ (t2))

)∣∣∣∣∣
≤ sup

t1,s.t.|t1−t2|≤N−1
T

∣∣∣∣∣ 1T
T∑
i=1

∆i(F
−1
ϵ (t1))− t1

∣∣∣∣∣+ sup
|t1−t2|≤N−1

T

|t1 − t2|+ sup
t2,s.t.|t1−t2|≤N−1

T

∣∣∣∣∣t2 − 1

T

T∑
i=1

∆i(F
−1
ϵ (t2))

∣∣∣∣∣ .
(30)

By the Glivenko–Cantelli theorem, it is obvious that sup|t1−t2|≤N−1
T

1
T

∣∣∣∑T
i=1

(
∆i(F

−1
ϵ (t1))−∆i(F

−1
ϵ (t2))

)∣∣∣
is op(1). Next, we consider the second term of the r.h.s of Eq. (29):

sup
k≤NT

sup
|ηT |≤T−λ

|zT (xk, ηT )|

= sup
k≤NT

sup
|ηT |≤T−λ

∣∣∣∣∣ 1T
T∑
i=1

(∆i(xk + ηT )−∆i(xk))

∣∣∣∣∣
= sup

k≤NT

sup
|ηT |≤T−λ

∣∣∣∣∣ 1T
T∑
i=1

∆i(xk + ηT )− Fϵ(xk + ηT ) + Fϵ(xk + ηT )− Fϵ(xk) + Fϵ(xk)−
1

T

T∑
i=1

∆i(xk)

∣∣∣∣∣
≤ sup

k≤NT

sup
|ηT |≤T−λ

{∣∣∣∣∣ 1T
T∑
i=1

∆i(xk + ηT )− Fϵ(xk + ηT )

∣∣∣∣∣+ |Fϵ(xk + ηT )− Fϵ(xk)|+

∣∣∣∣∣Fϵ(xk)−
1

T

T∑
i=1

∆i(xk)

∣∣∣∣∣
}
.

(31)

Applying the Glivenko–Cantelli theorem again, we can find the first and third term in the r.h.s. of
Eq. (31) converges to 0 a.s.. For the middle term:

sup
k≤NT

sup
|ηT |≤T−λ

|Fϵ(xk + ηT )− Fϵ(xk)|

= sup
k≤NT

sup
|ηT |≤T−λ

∣∣Fϵ(xk) + F ′
ϵ(x̃)ηT − Fϵ(xk)

∣∣
≤ sup

x
sup

|ηT |≤T−λ

∣∣F ′
ϵ(x̃)ηT

∣∣→ 0, Under A11.

(32)

We can do a similar analysis for the first term of the r.h.s of Eq. (29). Combining all parts together,
we prove Lemma 2.1. The proof with heteroscedastic errors can be written similarly.

Proof of Theorem 2.3. For simplifying the notations, we consider the NLAR model with order
1 and homoscedastic errors. For NLAR models with higher order and heteroscedastic errors, the proof
can be written similarly. We show the proof of h = 2 as an example. The proof of higher steps or
one-step prediction can be written similarly.
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First, by the tower property, we can show that FXT+2|XT
(x) is equivalent to:

FXT+2|XT
(x) = P(XT+2 ≤ x|XT )

= P(ϕ(XT+1, θ1) + ϵT+2 ≤ x|XT )

= P
(
ϵT+2 ≤ x− ϕ(ϕ(XT , θ1) + ϵT+1, θ1)

∣∣∣∣XT

)
= E

[
P
(
ϵT+2 ≤ x− ϕ(ϕ(XT , θ1) + ϵT+1, θ1)

∣∣∣∣ϵT+1, XT

) ∣∣∣∣XT

]
= E

[
Fϵ (x− ϕ(ϕ(XT , θ1) + ϵT+1, θ1))

∣∣∣∣XT

]
= E

[
Fϵ (L (x,XT , ϵT+1))

∣∣∣∣XT

]
;

(33)

we use L (x,XT , ϵT+1) to represent x − ϕ(ϕ(XT , θ1) + ϵT+1, θ1) to simplify notations. Similarly, we
can analyze FX∗

T+2|XT ,...,X0
(x), it has below equivalent expressions:

FX∗
T+2|XT ,...,X0

(x) = P(X∗
T+2 ≤ x|XT , . . . , X0)

= E
[
P
(
ϵ̂∗T+2 ≤ L̂ (x,XT , ϵ̂

∗
T+1)

∣∣∣∣ϵ̂∗T+1, XT , . . . , X0

) ∣∣∣∣XT , . . . , X0

]
= E∗

[
F̂ϵ

(
L̂ (x,XT , ϵ̂

∗
T+1)

)]
,

(34)

where L̂ (x,XT , ϵ̂
∗
T+1) represents x − ϕ(ϕ(XT , θ̂1) + ϵ̂∗T+1, θ̂1) and E∗(·) represents the expectation in

the bootstrap world, i.e., E(·|XT , . . . , X0). Thus, we hope to show:

sup
|x|≤cT

∣∣∣∣E∗
[
F̂ϵ(L̂ (x,XT , ϵ̂

∗
T+1))

]
− E

[
Fϵ (L (x,XT , ϵT+1))

∣∣∣∣XT

] ∣∣∣∣ p→ 0. (35)

From here, we first bound the region of Xt by Lemma 1 of Franke, Neumann, and Stockis (2004) under
A1–A7:

P(|XT | > γT ) → 0, (36)

where {γT } is a sequence of sets, such that γ1 ⊆ · · · ⊆ γT ⊆ γT+1 ⊆ · · · with the form γT = [−T c, T c];
c is some appropriate constant. For deriving such a result for a time series model with heteroscedastic
errors, we need the additional assumption of variance function in A1; then the proof is referred to
Lemma 1 of Franke, Neumann, and Stockis (2004). In addition, we have a relationship:

P

(
sup

|x|≤cT

∣∣∣∣E∗
[
F̂ϵ(L̂ (x,XT , ϵ̂

∗
T+1))

]
− E

[
Fϵ (L (x,XT , ϵT+1))

∣∣∣∣XT

] ∣∣∣∣ > ε

)

≤ P(|XT | > γT ) + P

(
(|XT | ≤ γT )

⋂(
sup

|x|≤cT

∣∣∣∣E∗
[
F̂ϵ(L̂ (x,XT , ϵ̂

∗
T+1))

]
− E

[
Fϵ (L (x,XT , ϵT+1))

∣∣∣∣XT

] ∣∣∣∣ > ε

))
.

(37)

Thus, to verify Eq. (35), we just need to show that the second term of the r.h.s. of Eq. (37) converges
to 0. We can take the sequence cT and γT to be the same sequence which converges to infinity slowly
enough. Then, it is enough for us to analyze the asymptotic probability of the below expression:

sup
|x|,|y|≤cT

∣∣∣∣E∗
[
F̂ϵ(L̂ (x, y, ϵ̂∗T+1))

]
− E [Fϵ (L (x, y, ϵT+1))]

∣∣∣∣ > ε. (38)
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Decompose the l.h.s. of Eq. (38) as:

sup
|x|,|y|≤cT

∣∣∣∣E∗
[
F̂ϵ(L̂ (x, y, ϵ̂∗T+1))

]
− E [Fϵ (L (x, y, ϵT+1))]

∣∣∣∣
≤ sup

|x|,|y|≤cT

∣∣∣∣E∗
[
F̂ϵ(L̂ (x, y, ϵ̂∗T+1))

]
− E∗

[
Fϵ(L̂ (x, y, ϵ̂∗T+1))

] ∣∣∣∣
+ sup

|x|,|y|≤cT

∣∣∣∣E∗
[
Fϵ(L̂ (x, y, ϵ̂∗T+1))

]
− E [Fϵ (L (x, y, ϵT+1))]

∣∣∣∣.
(39)

Then, we analyze two terms on the r.h.s. of Eq. (39) separately. For the first term, we have:

sup
|x|,|y|≤cT

∣∣∣∣E∗
[
F̂ϵ(L̂ (x, y, ϵ̂∗T+1))

]
− E∗

[
Fϵ(L̂ (x, y, ϵ̂∗T+1))

] ∣∣∣∣
≤ sup

|x|,|y|≤cT

E∗
∣∣∣∣F̂ϵ(L̂ (x, y, ϵ̂∗T+1))− Fϵ(L̂ (x, y, ϵ̂∗T+1))

∣∣∣∣
≤ sup

|x|,|y|≤cT ,z

∣∣∣∣F̂ϵ(L̂ (x, y, z))− Fϵ(L̂ (x, y, z))

∣∣∣∣ p→ 0, under Lemma 4.1.

(40)

For the second term on the r.h.s. of Eq. (39), we have:

sup
|x|,|y|≤cT

∣∣∣∣E∗
[
Fϵ(L̂ (x, y, ϵ̂∗T+1))

]
− E [Fϵ (L (x, y, ϵT+1))]

∣∣∣∣
≤ sup

|x|,|y|≤cT

∣∣∣∣ 1T
T∑
i=1

Fϵ(L̂ (x, y, ϵ̂i))−
1

T

T∑
i=1

Fϵ(L (x, y, ϵi))

∣∣∣∣
+ sup

|x|,|y|≤cT

∣∣∣∣ 1T
T∑
i=1

Fϵ(L (x, y, ϵi))− E [Fϵ (L (x, y, ϵT+1))]

∣∣∣∣,
(41)

where {ϵj}Tj=1 are taken as Xi − ϕ(Xi−1, θ1) for i = 1, . . . , T . We can show:

P
(

max
i=1,...,T

∣∣∣∣ϵi − ϵ̂i

∣∣∣∣ > ε

)
= P

(
max

i=1,...,T

∣∣∣∣Xi − ϕ(Xi−1, θ1)−Xi + ϕ(Xi−1, θ̂1)

∣∣∣∣ > ε

)
≤ P

(
( max
i=1,...,T

|Xi−1| > cT )

)
+ P

((
max

i=1,...,T
|Xi−1| < cT

)⋂(
max

i=1,...,T

∣∣∣∣ϕ(Xi−1, θ̂1)− ϕ(Xi−1, θ1)

∣∣∣∣ > ε

))
≤ o(1) + P

(
sup

|x|≤cT

∣∣∣∣ϕ(x, θ̂1)− ϕ(x, θ1)

∣∣∣∣ > ε

)
→ 0, under A9 and A10.

(42)

We further consider two terms on the r.h.s. of Eq. (41) separately. For the first term, by Taylor
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expansion, we have:

sup
|x|,|y|≤cT

∣∣∣∣ 1T
T∑
i=1

Fϵ(L̂ (x, y, ϵ̂i))−
1

T

T∑
i=1

Fϵ(L (x, y, ϵi))

∣∣∣∣
= sup

|x|,|y|≤cT

∣∣∣∣ 1T
T∑
i=1

(
Fϵ(L (x, y, ϵi)) + fϵ(oi)(L̂ (x, y, ϵ̂i)− L (x, y, ϵi))

)
− 1

T

T∑
i=1

Fϵ(L (x, y, ϵi))

∣∣∣∣
= sup

|x|,|y|≤cT

∣∣∣∣ 1T
T∑
i=1

fϵ(oi)(L̂ (x, y, ϵ̂i)− L (x, y, ϵi))

∣∣∣∣
≤ sup

|x|,|y|≤cT

1

T

T∑
i=1

∣∣∣∣fϵ(oi)(L̂ (x, y, ϵ̂i)− L (x, y, ϵi))

∣∣∣∣
≤ sup

|x|,|y|≤cT

sup
z

|fϵ(z)| ·
1

T

T∑
i=1

∣∣∣∣L̂ (x, y, ϵ̂i)− L (x, y, ϵi)

∣∣∣∣
≤ sup

|x|,|y|≤cT

C · 1
T

T∑
i=1

∣∣∣∣L̂ (x, y, ϵ̂i)− L (x, y, ϵi)

∣∣∣∣ (under A11)

≤ sup
|x|,|y|≤cT ,j∈{1,...,T}

C ·
∣∣∣∣L̂ (x, y, ϵ̂j)− L (x, y, ϵj)

∣∣∣∣.

(43)

From Eq. (42) and A9–A12, we have Eq. (43) converges to 0 in probability. For the second term on
the r.h.s. of Eq. (41), by the uniform law of large numbers, we have:

sup
|x|,|y|≤cT

∣∣∣∣ 1T
T∑
i=1

Fϵ(L (x, y, ϵi))− E [Fϵ (L (x, y, ϵT+1))]

∣∣∣∣ p→ 0. (44)

Combine all pieces, Eq. (38) converges to 0 in probability, which implies Theorem 2.3.

Proof of Lemma 3.1. Under A4-A7, the time series {Xt} is ergodic. Besides, under A2 and A10,
we can show L(ϑ) is uniformly finite for ϑ ∈ Θ1. With A13, by the uniform law of larger numbers for
the ergodic series, see Theorem 6 of Kirch and Kamgaing (2012) for a reference, we have:

sup
ϑ∈Θ1

|LT (ϑ)− L(ϑ)| p→ 0. (45)

Under A13 and A14, we can easily show that:

inf
|ϑ−θ1|>ε

L(ϑ) > L(θ1), for ∀ϵ, (46)

Eq. (46) implies that given ∀ε > 0, ∃C > 0 such that |ϑ − θ1| > ϵ ⇒ L(ϑ) − L(θ1) ≥ C > 0, thus we
have:

P(|θ̂1 − θ1| > ϵ) ≤ P(L(θ̂1)− L(θ1) ≥ C)

= P(L(θ̂1)− LT (θ̂1) + LT (θ̂1)− L(θ1) ≥ C)

≤ P(L(θ̂1)− LT (θ̂1) + LT (θ1)− L(θ1) ≥ C)

≤ P(2 sup
ϑ∈Θ1

|LT (ϑ)− L(ϑ)| > C) → 0.

(47)

The last inequality of Eq. (47) is guaranteed by Eq. (45).
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Proof of Lemma 3.2. The proof of the consistency of θ̂1 to θ1 is the same as the proof of Lemma
4.2. Similar to the proof of Lemma 4.2, by the ergodic property of the series {Xt}, we know:

sup
ϑ∈Θ2

∣∣∣∣∣ 1T
T∑
t=1

(
Xt − ϕ(Xt−1, θ1)

h(Xt−1, ϑ)

)2

− E
(
Xt − ϕ(Xt−1, θ1)

h(Xt−1, ϑ)

)2
∣∣∣∣∣ p→ 0. (48)

Actually, after the first step estimation, we have got the θ̂1 which is consistent to the true parameter
θ1. Thus, we need to find the below convergence relationship:

sup
ϑ∈Θ2

∣∣∣∣∣∣ 1T
T∑
t=1

(
Xt − ϕ(Xt−1, θ̂1)

h(Xt−1, ϑ)

)2

− E
(
Xt − ϕ(Xt−1, θ1)

h(Xt−1, ϑ)

)2
∣∣∣∣∣∣ p→ 0. (49)

Since θ̂1 converges to θ1 in probability, it is easily to find:

sup
ϑ∈Θ2

∣∣∣∣∣∣ 1T
T∑
t=1

(
Xt − ϕ(Xt−1, θ̂1)

h(Xt−1, ϑ)

)2

− 1

T

T∑
t=1

(
Xt − ϕ(Xt−1, θ1)

h(Xt−1, ϑ)

)2
∣∣∣∣∣∣ p→ 0, (50)

which implies Eq. (49) for a compact set Θ2 in conjunction with Eq. (48). Then, since | · −a| is a
uniformly continuous function for a constant a, by applying the uniform continuous mapping theorem
which is the Theorem 1 of Kasy (2019) on Eq. (49), we can get:

sup
ϑ∈Θ2

|KT (ϑ, θ̂1)−K(ϑ, θ1)|
p→ 0, (51)

where K(ϑ, θ1) and KT (ϑ, θ̂1) are:

K(ϑ, θ1) =

∣∣∣∣∣E
(
Xt − ϕ(Xt−1, θ1)

h(Xt−1, ϑ)

)2

− 1

∣∣∣∣∣ ; KT (ϑ, θ̂1) =

∣∣∣∣∣∣ 1T
T∑
t=1

(
Xt − ϕ(Xt−1, θ̂1)

h(Xt−1, ϑ)

)2

− 1

∣∣∣∣∣∣ . (52)

Then, we can repeat the procedure in the proof of Lemma 3.1 to show:

P(|θ̂2 − θ2| > ε) → 0, ∀ε > 0. (53)

Proof of Theorem 3.1. Throughout this proof, we focus on a sequence of sets ΩT+p ⊆ RT+p,
such that P ((X−p+1, . . . , XT ) /∈ ΩT+p) = o(1).We first explain the truth that the bootstrap series is
ergodic for (X−p+1, . . . , XT ) ∈ ΩT+p. Particularly, we want to check analogous A4-A7 in the bootstrap
world. With the consistency property of parameter estimators, i.e., A9 and the continuous density
function of residuals after the convolutional manipulation, we can easily find A4-A7 are satisfied in the
bootstrap world; see Theorem 2 of Franke, Neumann, and Stockis (2004) for more discussions.

To show the closeness of the stationary distribution of bootstrap and real series. Based on the
proof of Theorem 3 of Franke, Kreiss, et al. (2002) and Theorem 3 of Franke, Neumann, and Stockis
(2004), we can get:

sup
B

|Π(B)−Π∗(B)| = o(1), (54)
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which holds for all measurable sets B, where Π(B) and Π∗(B) represent stationary distribution for
real series and bootstrap series, respectively. This implies, in conjunction with Eq.(28) in the main
text and the condition that P(Xt /∈ γT ) = o(1), we can get:∫

R2

(x1 − ϕ(x0,Ξθ))
2f̂ϵ(x1 − ϕ(x0, θ̂))π

∗(x0)dx1dx0

=

∫
γ2
T

(x1 − ϕ(x0,Ξθ))
2f̂ϵ(x1 − ϕ(x0, θ̂))π

∗(x0)dx1dx0 + o(1)

→ E[X1 − ϕ(X0,Ξθ)]
2,

(55)

which implies Theorem 3.1 directly.

Proof of Theorem 3.2. To simplify notation, we consider the case p = q = 1. Higher order
cases can be handled similarly. We first build the estimation inference for θ̂1. Starting from A19, we
have:

op(T−1/2) = ∇LT (θ̂1) = ∇LT (θ1) +∇2LT (θ̃1)(θ̂1 − θ1), (56)

where θ̃1 is between θ̂1 and θ1; hence θ̃1 also converges to θ1 in probability. First, we consider ∇2LT (θ̃1),
which has a form as below:

∇2LT (θ̃1) =
1

T
∇2

T∑
t=1

(
Xt − ϕ(Xt−1, θ̃1)

)2
=

1

T

T∑
t=1

∇2qt(θ̃1). (57)

Under A18, since it is easy to check E supϑ∈Θ0
1
||∇2q1(ϑ) || < ∞, by combining the uniform law of

larger numbers for the ergodic series, dominated convergence theorem, the consistency between θ̃1 and
θ1 and the continuity of LT (·) w.r.t. θ1, we can get:

∇2LT (θ̃1)
p→ B1, (58)

where B1 = 2 · E
(
∇ϕ(X0, θ1)(∇ϕ(X0, θ1))

⊤). Thus, we can multiply both side of Eq. (56) by
√
T to

get:
op(1) =

√
T∇LT (θ1) + (B1 + op(1))

√
T (θ̂1 − θ1), (59)

which further implies that:

√
T (θ̂1 − θ1) = −B−1

1

√
T∇LT (θ1) + op(1), (60)

where
√
T∇LT (θ1) has a concrete form as below:

−
√
T∇LT (θ1) =

2√
T

T∑
t=1

(Xt − ϕ(Xt−1, θ1))∇ϕ(Xt−1, θ1). (61)

We need the CLT for strongly mixing processes to show the asymptotic normality of Eq. (61). Based
on Theorem 1.7 of Bosq (2012) for univariate case, we can show the normality with the Cramér–Wold
theorem. Also, Kirch and Kamgaing (2012) applied the strong invariance principle from Kuelbs and
Philipp (1980) to show the asymptotic distribution of multivariate cases directly. Since we need to
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analyze the asymptotic distribution of parameters in the bootstrap world, we take the first approach
which is more clear. We consider:

−
√
Ta⊤∇LT (θ1) =

2√
T

T∑
t=1

(Xt − ϕ(Xt−1, θ1))a
⊤∇ϕ(Xt−1, θ1), (62)

where a⊤ is any real vector that has the same dimension as θ1. Since we assume we can correctly
specify the model, we have:

−
√
Ta⊤∇LT (θ1)

d→ N(0, τ21 ), (63)

where τ21 has the form as follows:

τ21 =
∞∑

i=−∞
Cov

(
2 · (X1 − ϕ(X0, θ1))a

⊤∇ϕ(X0, θ1), 2 · (Xi+1 − ϕ(Xi, θ1))a
⊤∇ϕ(Xi, θ1)

)
= 4 · E

(
(a⊤∇ϕ(X0, θ1))(X1 − ϕ(X0, θ1))

2(∇ϕ(X0, θ1)
⊤a)

)
+ 2

∞∑
i=1

Cov
(
2 · (X1 − ϕ(X0, θ1))a

⊤∇ϕ(X0, θ1), 2 · (Xi+1 − ϕ(Xi, θ1))a
⊤∇ϕ(Xi, θ1)

)
= 4 · E(a⊤σ(X0, θ2)∇ϕ(X0, θ1)∇ϕ(X0, θ1)

⊤σ(X0, θ2)a)

+ 2

∞∑
i=1

Cov
(
2 · ϵ1a⊤∇ϕ(X0, θ1), 2 · ϵi+1a

⊤∇ϕ(Xi, θ1)
)

= 4 · E(a⊤σ(X0, θ2)R1σ(X0, θ2)a),

(64)

where R1 = ∇ϕ(X0, θ1)∇ϕ(X0, θ1)
⊤. Thus, applying Cramér–Wold theorem, we have:

−
√
T∇LT (θ1)

d→ N(0,Ω1), (65)

where Ω1 is 4 · E(σ(X0, θ2)R1σ(X0, θ2)) Thus, we can conclude from Eq. (60) that:

√
T (θ̂1 − θ1)

d→ N(0, B−1
1 Ω1B

−1
1 ). (66)

Compared to the result in Kirch and Kamgaing (2012), they got another form of Ω1:

Ω1 = lim
T→∞

1

T
E

(∇ T∑
t=1

(Xt − ϕ(Xt−1, θ1))
2

)(
∇

T∑
t=1

(Xt − ϕ(Xt−1, θ1))
2

)T
 . (67)

With a correctly specified model, it is equivalent to our form.
We can also analyze the distribution of parameter estimation θ̂2. By A19, we first have:

op(T−1/2) = ∇KT (θ2, θ̂1) +∇2KT (θ̃2, θ̂1)(θ̂2 − θ2). (68)

For simplifying the notation, we write:

KT (θ̃2, θ̂1) =

 1

T

T∑
t=1

(
Xt − ϕ(Xt−1, θ̂1)

h(Xt−1, θ̃2)

)2

− 1

2

=

(
1

T

T∑
t=1

g(Xt, Xt−1, θ̃2, θ̂1)− 1

)2

.

(69)
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We can find ∇KT (θ2, θ1) and ∇2KT (θ2, θ1) w.r.t θ2 have a following forms respectively:

∇KT (θ2, θ1) = 2 ·

(
1

T

T∑
t=1

g(Xt, Xt−1, θ2, θ1)− 1

)
·

(
1

T

T∑
t=1

∇g(Xt, Xt−1, θ2, θ1)

)

∇2KT (θ2, θ1) = 2 ·

(
1

T

T∑
t=1

∇g(Xt, Xt−1, θ2, θ1)

)
·

(
1

T

T∑
t=1

∇g(Xt, Xt−1, θ2, θ1)

)⊤

+ 2 ·

(
1

T

T∑
t=1

g(Xt, Xt−1, θ2, θ1)− 1

)
·

(
1

T

T∑
t=1

∇2g(Xt, Xt−1, θ2, θ1)

)
.

(70)

Similarly to analyze ∇2LT (θ̃1), under the consistence relationship between θ̃2 and θ2, θ̂1 and θ1, we
can get:

∇2KT (θ̃1, θ̂1)
p→ B2. (71)

where B2 = 2 · E(∇g(X1, X0, θ2, θ1)) · E(∇g(X1, X0, θ2, θ1)
⊤). Looking back to Eq. (68), it is left

to analyze
√
T∇KT (θ2, θ̂1). Through Slutsky’s theorem, it is asymptotically equivalent to analyze

√
T 2

T

∑T
t=1[g(Xt, Xt−1, θ2, θ1)− 1] ·B3; B3 = E(∇g(X1, X0, θ2, θ1)). Apply the same technique as we

analyzed the distribution of θ̂1, we can get:

√
Ta⊤∇KT (θ2, θ̂1)

d→ N(0, τ22 ), (72)

where τ22 = 4 · E(a⊤B3R2B
⊤
3 a); R2 = (g(X1, X0, θ2, θ1)− 1)2. Thus, we have:

√
T∇KT (θ2, θ̂1)

d→ N(0,Ω2), (73)

where Ω2 = 4 · E(B3R2B
⊤
3 ). This further implies that:

√
T (θ̂2 − θ2)

d→ N(0, B−1
2 Ω2B

−1
2 ). (74)
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