
Fall 2008 Handout on Using R/S-Plus Page: 1
Time Series Prepared by Will Garner Math 181E

Statistical Software: SAS vs. Minitab vs. SPSS vs. R / S-Plus

There are a wide variety of applications which can perform statistical analysis. The title
above only lists the major ones.

SAS is, to a large extent, an industry standard statistical software package. It is used
almost exclusively at Pharmaceutical companies to run data analysis for drug trials that
will ultimately go to the FDA for final approval. There is great demand for students with
SAS skills, but UCSD does not offer any courses on this software at this time. Many
companies, though, offer internships where one can pick up the necessary skills. It helps
to be familiar with a statistical language to begin with, though.

Minitab was originally developed to help students learn basic statistics. This software is
quite accessible to those unfamiliar with computers and its use is primarily limited to the
educational community. It used in Math 11 here at UCSD.

SPSS is a more powerful version of Minitab that includes more professional packages to
perform statistical analysis. SPSS is commonly used among the biomedical community
and in the social sciences.

The last two applications, R and S-Plus, have nearly identical command-line syntax, but
the latter is more GUI-oriented. The two programs started out the same. S-Plus was
developed into a commercial product that can handle large amounts of data, while R
focuses more on small data samples and is more appropriate for university researchers,
particularly those interested in computational statistics.

It should also be noted that packages exist for MATLAB which allow it to perform
statistical calculations. It is used in many engineering and basic science classes that have
an overlap with statistics.

So what are the differences between R and S-Plus?

As was mentioned above, R is primarily command-line based while S-Plus is more GUI-
oriented. For example, in either program you can type t.test(Data) to get detailed
hypothesis test which, by default, tests H0 : m = 0, and returns the test statistic, p-value,
and other potentially useful quantities. But in S-Plus, you can simply click on a menu
item instead of typing (and remembering) the t.test command. You may think of the
analogy as R representing the command-line Linux OS and S-Plus representing the
menu-driven Windows OS.

Both are free to students (you), but only R is open-source and under the GNU General
Public License. S-Plus is offering a Windows version of its product free to students, but
some registration is required. (Also, this version of S-Plus is limited in the amount of data
that it can load.)

Fall 2008 Handout on Using R/S-Plus Page: 2
Time Series Prepared by Will Garner Math 181E

Where can I get R and S-Plus?

To download R, go to http://cran.stat.ucla.edu/ then continue by clicking on the OS of
your choice (Linux/OS X/Windows). If you choose Windows, click on the subdirectory
link “base”, then choose “R-2.7.2-win32.exe”. To download S-Plus, go to
http://elms03.e-academy.com/splus/. As mentioned above, some registration is required.

For the purposes of this demonstration, we shall focus on R (and the Windows platform),
but again, the syntaxes of the two languages are 99% identical. As a word of warning, the
code provided in our textbook is designed for S-Plus. It should work in R just fine. Also,
near the end of the course, it seems that the code provided for ARCH and GARCH
models is intended for use in R, not in (the student version of) S-Plus.

Exercise: Download R or the student version of S-Plus to your computer.

Getting Started in R

Once you have started the R program, try doing some simple computations like: 1+1,
pi/exp(1) (that is p/e), factorial(6). Vectors, matrices, and arrays are very important in R
since all data sets are stored in these objects, but we will just focus on vectors today. We
shall create some vectors/lists: c(1,2,3,4), 1:4, seq(1,4) all create a vector consisting of
the numbers 1, 2, 3, 4. Now store the vector 1:4 to the variable vec by vec<-1:4. Type vec
and you should see “[1] 1 2 3 4”.

To add 3 to every element, simply type 3+vec; to square every element, vec^2; to
compute the length, length(vec); the average, mean(vec); standard deviation, sd(vec);
and a summary, summary(vec).

Any time you have a question about a command, simply type a question mark before the
command, like ?mean.

Exercises: (a) Make a vector containing {1, 1, 2, 2, 3, 3, 4} and call it vec2;
 (b) Compute the mean and standard deviation of vec2.

Higher-Level Functions

Create a vector of 50 i.i.d. standard normal data by rnorm(50) and save it to the variable x.
(This can be done via the command x<-rnorm(50,0,1), where here 50 represents the
number of data to generate, 0 is the mean and 1 is the standard deviation.) Indeed, x is an
example of a discrete time series, albeit a very trivial one. Knowing that the time series {Xi}
(i = 1, . . . , 50) is really just i.i.d. data, what is the best predictor of X51? We shall create a
time series plot of the data with ts.plot(x). To get see a plot of the autocorrelation function,
type acf(x). These plots appear below in Figure 1 and Figure 2, respectively.

Fall 2008 Handout on Using R/S-Plus Page: 3
Time Series Prepared by Will Garner Math 181E

 Figure 1: Time Series Plot of x Figure 2: ACF Plot of x

What is the autocorrelation at the zeroth lag? To see the acf numbers (corresponding to
the plot), type acf(x)$acf. Sometimes a plot of the partial-autocovariance function (pacf)
can be useful (do not worry if you do not know what the pacf is), simply type pacf(x).

We are not limited to generating random normal variables. The command rbinom(N, n, p)
generates N data from a Binomial(n, p) distribution. The command rexp(N, l) generates
N data from an exponential distribution with rate l. The command runif(N, min, max)
generates N data from a Uniform(min, max) distribution. There are many other
distributions built into R. Type in ?rbinom and scroll through the help file to look for
other commands that begin with “r…”.

Let us simulate a time series of length 100 from the AR(1) process Xt = 0.5Xt−1 + Zt
where Zt ~ i.i.d. N(0, 1). We create the process and store it to the variable x2 with the
command x2<-arima.sim(n= 100, list(ar = c(.5))). Again, we can consider a time series
plot of the data with the command ts.plot(x2). This is shown in Figure 3. We can
compute the pacf of x2 as well. This is shown in Figure 4.

 Figure 3: Time Series Plot of x2 Figure 4: PACF Plot of x2

Fall 2008 Handout on Using R/S-Plus Page: 4
Time Series Prepared by Will Garner Math 181E

Exercises: (a) create 100 iid uniform(0,1) stored into variable y;
 (b) create a time series plot, acf plot, and pacf plot of y (to prevent R from
 overwriting your previous plots, use the command windows())
 (c) compute the acf at lag 2 for y;
 (d) generate 1000 data from the AR(1) process above and store it as y2;
 (e) plot the pacf of y2

Importing Data

There are tons of ways to import data into R. Consider the dataset located in the file
http://www.math.ucsd.edu/~wgarner/math181e/sp500.txt. This data set has the daily
returns of the S&P500 from August 30, 1979 to August 30, 1991. (It consists of 3,035
data points.)

To load files from a website directly into R, you can use the command
sp500<-scan("http://math.ucsd.edu/~wgarner/math181e/sp500.txt")

Alternatively, go to http://www.math.ucsd.edu/~wgarner/math181e/sp500.txt and
download the sp500.txt file to your desktop. Make sure the you change the R command
directory to the directory where you downloaded the file with the command setwd, like
in setwd("C:/Documents and Settings/User Name/Desktop/") or by going to File − >
Change dir and browse until you find the correct folder. Once the data has been
downloaded and the directory set correctly, simply scan in the data to the variable sp500
with the command sp500<-scan("sp500.txt").

Exercises: (a) Create a time series plot of sp500;
 (b) Create a time series plot of each day’s price difference by ts.plot(diff(sp500));
 (c) Fit an AR model to the differenced data with ar(diff(sp500)). What is the
 order of the AR model that was automatically chosen;
 (d) Plot the pacf of the differenced data;
 (e) Plot an estimate of the spectral density with the command
 spec.pgram(diff(sp500),kernel("daniell", 70))

Acknowledgements

I am grateful to Arthur Berg, whose original handout on R and S-Plus was the basis for
these notes.

