Which of the following is a subspace of \(\mathbb{R}^2 \) under standard addition and standard scalar multiplication?

A. The set of all points on \(y = -3x \)
B. The set of all points on \(y = -3x + 1 \)
C. The set of all points on \(y = |x| \)
D. The set of all points on \(y = x^2 \)
E. \(\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \} \)
Which of the following is a subspace of \mathbb{R}^3 under standard addition and scalar multiplication?

A. $\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$

B. The set of all points on the line $y = 0$

C. The set of all points on the xz-plane

D. The entire \mathbb{R}^3

E. All of the above
Question 3

Suppose two matrices A and B are row-equivalent. Which of the following is false?

A. $\text{Nul}(A) = \text{Nul}(B)$
B. $\text{Row}(A) = \text{Row}(B)$
C. $\text{Col}(A) = \text{Col}(B)$
D. The equations $Ax = 0$ and $Bx = 0$ have the same solution set
E. Choose this if all the above are true
Recall from Section 1.7:

Definition

Let \(\{v_1, v_2, \ldots, v_p\} \) be a set of \(p \) vectors in \(\mathbb{R}^n \).

- \(\{v_1, v_2, \ldots, v_p\} \) is said to be **linearly independent** if the vector equation
 \[
 x_1 v_1 + x_2 v_2 + \cdots + x_p v_p = 0
 \]
 has **only** the trivial solution.

- \(\{v_1, v_2, \ldots, v_p\} \) is said to be **linearly dependent** if there exists the weights \(c_1, c_2, \ldots, c_p \), not all zeros, such that
 \[
 c_1 v_1 + c_2 v_2 + \cdots + c_p v_p = 0
 \]
Definition

A set of vectors $S = \{v_1, v_2, \ldots, v_p\}$ in the vector space V is called a **basis** for V if

1. S is linearly independent
2. $V = \text{Span}\{S\}$
Example (Standard Bases)

The following sets are **standard bases** for their respective vector spaces:

- The set $S_n = \{e_1, e_2, \ldots, e_n\}$, where e_i is the i^{th} column of the identity matrix I_n, is a basis for \mathbb{R}^n

- $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ is a basis for M_2

- $\{1, t, t^2, \ldots, t^n\}$ is a basis for \mathbb{P}_n.
Example (Non-Standard Basis for \mathbb{R}^3)

The set $S = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3.

YOU check:
1. The vectors are linearly independent
2. The vectors span \mathbb{R}^3
Let S be a basis of \mathbb{R}^3. Then it is possible that S can have more than 3 vectors

A. True. S just needs to be linearly independent and span \mathbb{R}^3
B. False. Such a set will never span \mathbb{R}^3
C. False. Such a set will never be linearly independent
Let S be a **basis** of \mathbb{R}^3. Then it is possible that S can have **less than 3 vectors**

A. True. S just needs to be linearly independent and span \mathbb{R}^3

B. False. Such a set will never span \mathbb{R}^3

C. False. Such a set will never be linearly independent
Remarks: Suppose we have a set of p vectors $S = \{v_1, v_2, \ldots, v_p\}$ in \mathbb{R}^n. Then

- If $p < n$, then there is not enough vectors in S to span \mathbb{R}^n. So S is not a basis for \mathbb{R}^n.
- If $p > n$ then S is not linearly independent. Therefore, S is not a basis for \mathbb{R}^n. However, it’s still possible that S spans \mathbb{R}^n.
- If $p = n$ then S is a basis for \mathbb{R}^n if and only if the matrix $A = [v_1 \ v_2 \ \ldots \ v_n]$ is invertible (has a pivot in every column.)
Definition

If a vector space V has a basis consisting of n vectors then the number n is called the **dimension** of V, denote $dim(V) = n$.

If V consists only the zero vector (i.e. $V = \{0\}$) then we define $dim(V) = 0$.

If V is spanned by a finite set then V is said to be **finite-dimensional**. Otherwise, V is **infinite-dimensional**.
The Spanning Set Theorem

Theorem

Let \(S = \{v_1, v_2, \ldots, v_p\} \) be a set in \(V \) and let \(H = \text{Span}(S) \).

- If \(H \neq \{0\} \) then some subset of \(S \) is a basis of \(H \).
- If one of the vectors in \(S \) - say \(v_k \) - is the linear combination of the remaining vectors in \(S \) then the set \(S - \{v_k\} \) still spans \(H \).

Remark: This result allows us to obtain a basis for a vector space from it spanning set simply by removing all the “redundant” vectors in the spanning set.