Problem 1. Let V be the set of all \mathbb{R}^4 vectors of the form
\[
\begin{bmatrix}
 a - 2b + 5c \\
 2a + 5b - 8c \\
 -a - 4b + 7c \\
 3a + b + c
\end{bmatrix}
\]
for $a, b, c \in \mathbb{R}$. Explain why V is a vector space and find a basis for V.

Problem 2. For each part of this problem, you are given a vector space V, a set B containing the vectors in V, and a coordinate vector $[x]_B$. Please do the following:

(i.) First show that B is indeed a basis for V,

(ii.) then find the change-of-coordinates matrix from B to the standard basis of V, and

(iii.) find the vector x whose coordinates are given by $[x]_B$.

a. $V = \mathbb{R}^3$; $B = \left\{ \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} \right\}$; $[x]_B = \begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix}$

b. $V = \mathbb{P}_3$; $B = \{1, 1 - t, 2 - 4t + t^2, 6 - 18t + 9t^2 - t^3\}$; $[x]_B = \begin{bmatrix} 5 \\ -4 \\ 3 \\ 1 \end{bmatrix}$

c. $V = \text{Span}\{v_1, v_2, v_3\} = \text{Span}\left\{ \begin{bmatrix} -6 \\ 4 \\ -9 \\ 4 \end{bmatrix}, \begin{bmatrix} 8 \\ -3 \\ 7 \\ -3 \end{bmatrix}, \begin{bmatrix} -9 \\ 5 \\ -8 \\ 3 \end{bmatrix} \right\}$; $B = \{v_1, v_2, v_3\}$; $x = \begin{bmatrix} 4 \\ 7 \\ -8 \\ 3 \end{bmatrix}$
Problem 4. For each part of this problem, you are given vector space V, the standard basis S of V and a non-standard basis B of V. Find the following:

(i.) $P_{S \leftarrow B}$, the change-of-coordinates matrix from B to the standard basis, and
(ii.) $P_{B \leftarrow S}$, the change-of-coordinates matrix from the standard basis to B.

a. $V = \mathbb{R}^3$; $S = \{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \}$; $B = \{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \}$

b. $V = \mathbb{P}_2$; $S = \{ 1, t, t^2 \}$; $B = \{ 1 - 3t^2, 2 + t - 5t^2, 1 + 2t \}$

Problem 5.

a. Let $B = \{ b_1, b_2 \}$ and $C = \{ c_1, c_2 \}$ be two bases of a vector space V and let $x = 5b_1 + 3b_2$. Suppose $b_1 = -c_1 + 4c_2$ and $b_2 = 5c_1 - 3c_2$. Find $P_{C \leftarrow B}$, the change-of-coordinates matrix from B to C, and the coordinates $[x]_C$.

b. Let $B = \{ \begin{bmatrix} 1 \\ -3 \\ 4 \\ \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \\ 6 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \}$ and $C = \{ \begin{bmatrix} -3 \\ 4 \\ -3 \\ \end{bmatrix}, \begin{bmatrix} -8 \\ 6 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 5 \\ 7 \end{bmatrix} \}$ be two bases of \mathbb{R}^3. Find $P_{C \leftarrow B}$ and $P_{B \leftarrow C}$

Problem 6. Answer the following statements with True or False. If true, give the approximate location in the textbook where a similar statement appears, or refer to a definition or theorem. If false, give a counter-example to show that the statement is not true for all cases.

a. If A is a matrix then $\text{rank}(A)$ equals to the number of non-zero rows in A.

b. In \mathbb{P}_2, take $f(t) = 3 + t$ and $g(t) = 3t + 3t^2$. Then $f(t)$ and $g(t)$ are linearly dependent since $g(t) = tf(t)$.

c. The columns of $P_{C \leftarrow B}$ are linearly independent.

d. If A is a 5×6 matrix with four pivot columns then $\text{Col}(A) = \mathbb{R}^4$.

e. If A is a 6×8 matrix then the smallest possible dimension for $\text{Nul}(A)$ is 2.

f. If A is a 6×4 matrix then $\text{nullity}(A) \geq 2$.

2
Problem 7 - Optional (maximum 2 out of 10 points). For this exercise, we shall use MatLab to discover some conjectures about the determinant of a matrix. You need to print out the MatLab codes and result that you obtain and submit them together with your answer to the previous six exercises.

a. First, create a 5×5 matrix A with randomized integer entries between -10 and 10 and compute $\det(A)$.

b. Compute the following determinants: $\det(A^T)$, $\det(-A)$, $\det(2A)$, $\det(5A)$, $\det(-3A)$ and compare those values to $\det(A)$

c. Using the results from part (b), give your conjectures about the relation between each of $\det(A^T)$, $\det(-A)$, and $\det(kA)$ (where k is a scalar) to $\det(A)$.

d. Test your conjectures using some other randomized matrix with higher dimensions, as well several different values for the scalar k. Comment on whether your findings in part (c) still holds.