$A = [a_1, a_2, ..., a_n]$ is an $m \times n$ matrix

Existence

- $x \mapsto Ax$ is onto
 - $Ax = b$ is consistent for all b in \mathbb{R}^m
 - Every b in \mathbb{R}^m is a linear combination of the columns of A
 - $\text{Span}\{a_1, ..., a_n\} = \mathbb{R}^m$
 - i.e. the columns of A span \mathbb{R}^m
 - A has a pivot in every ROW

Uniqueness

- $x \mapsto Ax$ is one to one
 - $Ax = 0$ has only trivial solution
 - The columns of A are linearly independent
 - A has a pivot in every COLUMN