Second Order Partial Derivatives

Definition

Let \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) such that \(\partial f / \partial x, \partial f / \partial y \) exist and are continuous.

- \(f_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \): taking the partial derivative w.r.t. \(x \) twice
- \(f_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \): taking the partial derivative w.r.t. \(y \) twice
- \(f_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \): taking the \(x \)-partial first then \(y \)-partial
- \(f_{yx} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \): taking the \(y \)-partial first then \(x \)-partial

The last two are called **mixed partial derivatives**.

If all second order partial derivatives exist and are continuous, then we say that \(f \) is of **class \(C^2 \)** (**twice continuously differentiable**).
Example 1

Example

Find all the second partial derivatives of \(f(x, y) = x \ln(y) \)

Solution:

\[
\begin{align*}
 f_{xx} &= \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = 0; \\
 f_{yy} &= \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = -\frac{x}{y^2} \\
 f_{xy} &= \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{1}{y};
\end{align*}
\]

\[
\begin{align*}
 f_{yx} &= \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{1}{y}.
\end{align*}
\]
Example 2

Example

Find all the second partial derivatives of \(f(x, y) = \sin(x^2 y) \)

Solution:

\[
\begin{align*}
 f_{xx} &= \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = 2y \cos(x^2 y) - 4x^2 y^2 \sin(x^2 y) \\
 f_{yy} &= \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = -x^4 \sin(x^2 y) \\
 f_{xy} &= \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = 2x \cos(x^2 y) - 2x^3 y \sin(x^2 y) \\
 f_{yx} &= \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = 2x \cos(x^2 y) - 2x^3 y \sin(x^2 y)
\end{align*}
\]
Let $f(x, y) = y^3x - x^2y^2 + 4x^2y$. Then f_{yy} is

A. $y^3 - 2xy^2 + 8xy$
B. $3xy^2 - 2x^2y + 4x^2$
C. $2y^2 + 8y$
D. $3y^2 - 4xy + 8x$
E. $6xy - 2x^2$
Let \(f(x, y) = y^3x - x^2y^2 + 4x^2y \). Then \(f_{yx} \) is

A. \(y^3 - 2xy^2 + 8xy \)
B. \(3xy^2 - 2x^2y + 4x^2 \)
C. \(2y^2 + 8y \)
D. \(3y^2 - 4xy + 8x \)
E. \(6xy - 2x^2 \)
Let $f(x, y) = y^3x - x^2y^2 + 4x^2y$. Then f_{xy} is

A. $y^3 - 2xy^2 + 8xy$
B. $3xy^2 - 2x^2y + 4x^2$
C. $2y^2 + 8y$
D. $3y^2 - 4xy + 8x$
E. $6xy - 2x^2$
Theorem

If \(f \) is of class \(C^2 \) (twice continuously differentiable) then

\[
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}
\]

This is known as Clairaut’s theorem. In the homework, we shall extend this result to functions in \(C^3, C^4, \ldots \) as well as consider an example where the function fails to satisfy the hypothesis of this theorem.

Explain why there is no function \(f(x, y) \) such that

\[
\frac{\partial f}{\partial x}(x, y) = 2x + 3y \quad \text{and} \quad \frac{\partial f}{\partial y}(x, y) = 4x + 6y?
\]
If f is of class C^2 is called a harmonic function if it satisfies the following Laplace’s equation

$$f_{xx} + f_{yy} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

Is $f(x, y) = x^3 - 3xy^2$ a harmonic function?