Problem 6.b.

\[\int \sqrt{x^2 + a^2} \, dx = \frac{x\sqrt{x^2 + a^2}}{2} + \frac{a^2}{2} \ln \left(x + \sqrt{x^2 + a^2} \right). \]

Problem 7. Let us first consider the following definitions:

1. A differentiable curve \(c(t) \) is called regular if its derivative never vanishes, that is, \(c'(t) \neq 0 \) for any \(t \). If the curve is regular, then the vector \(T(t) = \frac{c'(t)}{\|c'(t)\|} \) is the unit tangent vector to the curve.

2. If \(\|c'(t)\| = 1 \) for all \(t \) then the curve is said to be parametrized by arc length. Whenever the curve is parametrized by arc length, we shall denote this parameter by \(s \). The scalar \(\kappa = \left\| \frac{dT}{ds} \right\| \) is called the curvature of the curve.

3. If \(\kappa \neq 0 \) then the unit vector \(N(t) = \frac{dT/dt}{\|dT/dt\|} \) is called the principal normal vector to the curve.

4. Lastly, we define \(B(t) = T(t) \times N(t) \) to be the unit binormal vector of \(c \).

If a curve \(c(t) \) is regular but not parametrized by arc length, we can introduce a new independent variable so that the new curve is parametrized by arc length. Take a value \(a \) in the domain of the curve and define

\[s = p(t) = \int_a^t \|c'(u)\| \, du \]

to be the arc length of \(c(t) \) between \(a \) and \(t \).

We have \(\frac{ds}{dt} = \frac{d}{dt} \int_a^t \|c'(u)\| \, du = \|c'(t)\| > 0 \) since the curve is regular. So \(s \) is an increasing function of \(t \) and thus, the inverse \(t = q(s) \) exists.

We now consider the curve \(c_1(s) = c(q(s)) \) which goes through the same points as the original curve but at a different speed. This new speed is given by

\[\|c_1'(t)\| = \|q'(s)c'(q(s))\| = q'(s)\|c'(q(s))\| = \frac{1}{p'(q(s))}\|c'(q(s))\| = \frac{\|c'(q(s))\|}{\|c'(t)\|} = 1. \]

This shows that the new curve \(c_1(s) \) is the parametrization by arc length of the given curve \(c(t) \).

The curvature \(\kappa = \left\| \frac{dT(t)}{ds} \right\| \) is defined as the rate at which the unit tangent vector changes with respect to arc length. An alternative formula to compute the curvature is

\[\kappa = \frac{\|c'(t) \times c''(t)\|}{\|c'(t)\|^3}. \]